应用动量方程推导了梯形断面波浪形底板消力池自由水跃的共轭水深计算公式,采用VOF(volume of fluid)方法追踪自由液面,模拟了三维梯形断面波浪形底板消力池自由水跃,辅以RNG(重整化群)湍流模型封闭时均流方程,选用有限体积法离散微分方...应用动量方程推导了梯形断面波浪形底板消力池自由水跃的共轭水深计算公式,采用VOF(volume of fluid)方法追踪自由液面,模拟了三维梯形断面波浪形底板消力池自由水跃,辅以RNG(重整化群)湍流模型封闭时均流方程,选用有限体积法离散微分方程,使用压力隐式算子分裂PISO(Pressure-Implicit with Splitting of Operators)算法耦合求解速度与压力。模拟结果显示:梯形断面波浪形底板消力池中水跃的自由液面的形状、位置和水跃尺寸等模拟结果与实验值吻合较好;水跃区纵断面的流线、流速和紊动动能分布规律近似于矩形断面消力池,表明梯形断面波浪形底板消力池自由水跃的水力特性与矩形断面相似,并且矩形断面波浪形底板自由水跃的经验公式可以应用于梯形断面波浪形底板消力池的自由水跃。研究结果对消力池工程设计有一定的参考价值。展开更多
This paper is concerned with a mathematical model for two-dimensional strong turbulence flow with free surface including the effects of streamline curvature in orthogonal curvilinear coordinate system, with which the ...This paper is concerned with a mathematical model for two-dimensional strong turbulence flow with free surface including the effects of streamline curvature in orthogonal curvilinear coordinate system, with which the characteristics of the turbulence flow field on the ogee spillway was numerical simulated. In the numerical simulation, the flow control equations in orthogonal curvilinear coordinate system were discretized by the finite volume method, the physical parameters( P, U,V,K,ε,γt , etc. ) were arranged on a staggered grid, the discretized equations were solved with the SIMPLEC method, and the complex free surface was dealt with VOF method. The computed results show that the velocity fields, pressure field, shear stress distribution and kinetic energy of turbulent flow on the ogee spillway are in agreement with experimental data. This confirms that the model can be used for numerieal simulation of the turbulence flow on ogee spillway.展开更多
This paper is concerned with the numerical solution of turbulent flows on the concave surfaces of spillway dams. Orthogonal curvilinear coordinates are used to deal with the complicated computational region and the ef...This paper is concerned with the numerical solution of turbulent flows on the concave surfaces of spillway dams. Orthogonal curvilinear coordinates are used to deal with the complicated computational region and the effects of streamline curvature on turbulent flows are included. The SIMPLEC procedure has been used for the transformed governing equations in the transformed domain. The comparison between computed results and experimental data shows a satisfactory agreement.展开更多
This paper is conserned with a numerical method for the solution of complete Reynolds averaged Navier Stokes equations for three dimensional flows over the concave surfaces of discharging structures. A non orthogo...This paper is conserned with a numerical method for the solution of complete Reynolds averaged Navier Stokes equations for three dimensional flows over the concave surfaces of discharging structures. A non orthogonal body fitted coordinate system was used to deal with the complex physical geometry, and finite volume method (FVM) was employed to solve the convective transport equations for mean velocities and turbulence parameters (k, ε). It is indicated through the numerical example that the calculated results are in good agreement with the experimental ones, and it is also proved that this numerical method used to predict the characteristics of turbulent flow over the concave surfaces of discharging structures is feasible.展开更多
文摘应用动量方程推导了梯形断面波浪形底板消力池自由水跃的共轭水深计算公式,采用VOF(volume of fluid)方法追踪自由液面,模拟了三维梯形断面波浪形底板消力池自由水跃,辅以RNG(重整化群)湍流模型封闭时均流方程,选用有限体积法离散微分方程,使用压力隐式算子分裂PISO(Pressure-Implicit with Splitting of Operators)算法耦合求解速度与压力。模拟结果显示:梯形断面波浪形底板消力池中水跃的自由液面的形状、位置和水跃尺寸等模拟结果与实验值吻合较好;水跃区纵断面的流线、流速和紊动动能分布规律近似于矩形断面消力池,表明梯形断面波浪形底板消力池自由水跃的水力特性与矩形断面相似,并且矩形断面波浪形底板自由水跃的经验公式可以应用于梯形断面波浪形底板消力池的自由水跃。研究结果对消力池工程设计有一定的参考价值。
文摘This paper is concerned with a mathematical model for two-dimensional strong turbulence flow with free surface including the effects of streamline curvature in orthogonal curvilinear coordinate system, with which the characteristics of the turbulence flow field on the ogee spillway was numerical simulated. In the numerical simulation, the flow control equations in orthogonal curvilinear coordinate system were discretized by the finite volume method, the physical parameters( P, U,V,K,ε,γt , etc. ) were arranged on a staggered grid, the discretized equations were solved with the SIMPLEC method, and the complex free surface was dealt with VOF method. The computed results show that the velocity fields, pressure field, shear stress distribution and kinetic energy of turbulent flow on the ogee spillway are in agreement with experimental data. This confirms that the model can be used for numerieal simulation of the turbulence flow on ogee spillway.
文摘This paper is concerned with the numerical solution of turbulent flows on the concave surfaces of spillway dams. Orthogonal curvilinear coordinates are used to deal with the complicated computational region and the effects of streamline curvature on turbulent flows are included. The SIMPLEC procedure has been used for the transformed governing equations in the transformed domain. The comparison between computed results and experimental data shows a satisfactory agreement.
基金The work was supported by the 95'Natlonal Scientific Research Project.(No.95-221-05-01)
文摘This paper is conserned with a numerical method for the solution of complete Reynolds averaged Navier Stokes equations for three dimensional flows over the concave surfaces of discharging structures. A non orthogonal body fitted coordinate system was used to deal with the complex physical geometry, and finite volume method (FVM) was employed to solve the convective transport equations for mean velocities and turbulence parameters (k, ε). It is indicated through the numerical example that the calculated results are in good agreement with the experimental ones, and it is also proved that this numerical method used to predict the characteristics of turbulent flow over the concave surfaces of discharging structures is feasible.