以四水合钼酸铵、六水合硝酸钴和硫脲为原料,采用一步水热法在钛网(TM)上原位构筑了不同阵列结构Co_(9)S_(8)/MoS_(2)@TM催化电极。通过改变原料中钴、钼、硫的物质的量之比来调控Co_(9)S_(8)/MoS_(2)@TM电极的结构。采用SEM、XRD和XPS...以四水合钼酸铵、六水合硝酸钴和硫脲为原料,采用一步水热法在钛网(TM)上原位构筑了不同阵列结构Co_(9)S_(8)/MoS_(2)@TM催化电极。通过改变原料中钴、钼、硫的物质的量之比来调控Co_(9)S_(8)/MoS_(2)@TM电极的结构。采用SEM、XRD和XPS对Co_(9)S_(8)/MoS_(2)@TM进行物相分析和形貌表征,并在1 mol/L KOH电解液中对Co_(9)S_(8)/MoS_(2)@TM的电催化析氧性能进行了研究。结果表明,钴、钼、硫的物质的量之比为10∶14∶600时,制备的Co_(9)S_(8)/MoS_(2)@TM为3D花瓣状阵列结构,且在10 m A/cm^(2)电流密度下过电势为271 m V,塔菲尔斜率为88.5 m V/dec,具有良好的析氧稳定性和耐久性,展现了优异的电化学性能。展开更多
Stop-action technique was employed in order to study grain structure and texture evolution of thin 6082-T6 aluminum alloy sheets during friction stir welding(FSW). The evolutions of microstructure and texture were stu...Stop-action technique was employed in order to study grain structure and texture evolution of thin 6082-T6 aluminum alloy sheets during friction stir welding(FSW). The evolutions of microstructure and texture were studied in different regions(ahead, behind, far behind the tool and base material as well) of the deformed samples. Materials ahead the tool experienced shear deformation were induced by rotation of the tool as well as the shoulder, which can pronounce copper and Goss texture. Grains behind the tool experienced dynamic recovery and recrystallization, exhibiting a characteristic of {110}<001> recrystallization Goss texture. Materials far behind the tool probably experienced more thermal cycling. Recrystallization grains will grow and present {100}<012> texture. In addition, the shoulder gave rise to a large shear stress that led to {111}<110> shear texture.展开更多
文摘以四水合钼酸铵、六水合硝酸钴和硫脲为原料,采用一步水热法在钛网(TM)上原位构筑了不同阵列结构Co_(9)S_(8)/MoS_(2)@TM催化电极。通过改变原料中钴、钼、硫的物质的量之比来调控Co_(9)S_(8)/MoS_(2)@TM电极的结构。采用SEM、XRD和XPS对Co_(9)S_(8)/MoS_(2)@TM进行物相分析和形貌表征,并在1 mol/L KOH电解液中对Co_(9)S_(8)/MoS_(2)@TM的电催化析氧性能进行了研究。结果表明,钴、钼、硫的物质的量之比为10∶14∶600时,制备的Co_(9)S_(8)/MoS_(2)@TM为3D花瓣状阵列结构,且在10 m A/cm^(2)电流密度下过电势为271 m V,塔菲尔斜率为88.5 m V/dec,具有良好的析氧稳定性和耐久性,展现了优异的电化学性能。
基金Funded by the Major National Science and Technology Projects(No.2012ZX04008011)the Fundamental Research Funds of Gansu Province for Higher Education Institutions
文摘Stop-action technique was employed in order to study grain structure and texture evolution of thin 6082-T6 aluminum alloy sheets during friction stir welding(FSW). The evolutions of microstructure and texture were studied in different regions(ahead, behind, far behind the tool and base material as well) of the deformed samples. Materials ahead the tool experienced shear deformation were induced by rotation of the tool as well as the shoulder, which can pronounce copper and Goss texture. Grains behind the tool experienced dynamic recovery and recrystallization, exhibiting a characteristic of {110}<001> recrystallization Goss texture. Materials far behind the tool probably experienced more thermal cycling. Recrystallization grains will grow and present {100}<012> texture. In addition, the shoulder gave rise to a large shear stress that led to {111}<110> shear texture.