Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short tr...Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short transmission range communication because of the serious free space path loss and the blockage by obstacles.To overcome these challenges,highly directional beams are exploited to achieve robust links by hybrid beamforming.Accurately aligning the transmitter and receiver beams,i.e.beam training,is vitally important to high data rate transmission.However,it may cause huge overhead which has negative effects on initial access,handover,and tracking.Besides,the mobility patterns of users are complicated and dynamic,which may cause tracking error and large tracking latency.An efficient beam tracking method has a positive effect on sustaining robust links.This article provides an overview of the beam training and tracking technologies on mmWave bands and reveals the insights for future research in the 6th Generation(6G)mobile network.Especially,some open research problems are proposed to realize fast,accurate,and robust beam training and tracking.We hope that this survey provides guidelines for the researchers in the area of mmWave communications.展开更多
Unmanned Aerial Vehicle(UAV)ad hoc network has achieved significant growth for its flexibility,extensibility,and high deployability in recent years.The application of clustering scheme for UAV ad hoc network is impera...Unmanned Aerial Vehicle(UAV)ad hoc network has achieved significant growth for its flexibility,extensibility,and high deployability in recent years.The application of clustering scheme for UAV ad hoc network is imperative to enhance the performance of throughput and energy efficiency.In conventional clustering scheme,a single cluster head(CH)is always assigned in each cluster.However,this method has some weaknesses such as overload and premature death of CH when the number of UAVs increased.In order to solve this problem,we propose a dual-cluster-head based medium access control(DCHMAC)scheme for large-scale UAV networks.In DCHMAC,two CHs are elected to manage resource allocation and data forwarding cooperatively.Specifically,two CHs work on different channels.One of CH is used for intra-cluster communication and the other one is for inter-cluster communication.A Markov chain model is developed to analyse the throughput of the network.Simulation result shows that compared with FM-MAC(flying ad hoc networks multi-channel MAC,FM-MAC),DCHMAC improves the throughput by approximately 20%~50%and prolongs the network lifetime by approximately 40%.展开更多
Beam management,including initial access(IA)and beam tracking,is essential to the millimeter-wave Unmanned Aerial Vehicle(UAV)network.However,the conventional communicationonly and feedback-based schemes suffer a high...Beam management,including initial access(IA)and beam tracking,is essential to the millimeter-wave Unmanned Aerial Vehicle(UAV)network.However,the conventional communicationonly and feedback-based schemes suffer a high delay and low accuracy of beam alignment,since they only enable the receiver to passively“hear”the information of the transmitter from the radio domain.This paper presents a novel sensing-assisted beam management approach,the first solution that fully utilizes the information from the visual domain to improve communication performance.We employ both integrated sensing and communication and computer vision techniques and design an extended Kalman filtering method for beam tracking and prediction.Besides,we also propose a novel dual identity association solution to distinguish multiple UAVs in dynamic environments.Real-world experiments and numerical results show that the proposed solution outperforms the conventional methods in IA delay,association accuracy,tracking error,and communication performance.展开更多
In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communicati...In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communication(ISAC),as an emerging technology in 6G mobile networks,has shown great potential in improving communication performance with the assistance of sensing information.ISAC obtains the prior information about node distribution,reducing the ND time.However,the prior information obtained through ISAC may be imperfect.Hence,an ND algorithm based on reinforcement learning is proposed.The learning automaton(LA)is applied to interact with the environment and continuously adjust the probability of selecting beams to accelerate the convergence speed of ND algorithms.Besides,an efficient ND algorithm in the neighbor maintenance phase is designed,which applies the Kalman filter to predict node movement.Simulation results show that the LA-based ND algorithm reduces the ND time by up to 32%compared with the Scan-Based Algorithm(SBA),which proves the efficiency of the proposed ND algorithms.展开更多
As one of the key characteristics in cognitive wireless networks(CWNs),network environment awareness techniques have received much attention recently.Instead of traditional spectrum sensing technology that suffers fro...As one of the key characteristics in cognitive wireless networks(CWNs),network environment awareness techniques have received much attention recently.Instead of traditional spectrum sensing technology that suffers from problems of miss detection,false alarm,hidden node,and inefficiency,cognitive pilot channel(CPC) technology has been proposed as one of the candidate solutions for an efficient and accurate network information delivery scheme to user equipment(UE).The aim of the CPC technology is to provide the necessary information for the reconfiguration of the UE using the public signaling channel.To ensure the efficient information delivery,the whole geographical area covered by the CPC is divided into square meshes of the same size.Moreover,two typical network information transmission modes for CPC deployment are also proposed:broadcast CPC mode and on-demand CPC mode.To further improve the efficiency of network information delivery,an efficient dynamic mesh grouping scheme has been designed which is based on the fractal theory for the broadcast CPC mode,where adaptive rectangular sized meshes are used to approximately cover the whole area.Compared to the traditional fixed size mesh division strategy,results show that the proposed dynamic mesh grouping scheme significantly reduces the number of meshes by grouping similar meshes together,and the average delay of receiving CPC information on the UE side is therefore reduced.展开更多
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 92267202in part by the Municipal Government of Quzhou under Grant 2023D027+2 种基金in part by the National Natural Science Foundation of China(NSFC)under Grant 62321001in part by the National Key Research and Development Program of China under Grant 2020YFA0711303in part by the Beijing Natural Science Foundation under Grant Z220004.
文摘Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short transmission range communication because of the serious free space path loss and the blockage by obstacles.To overcome these challenges,highly directional beams are exploited to achieve robust links by hybrid beamforming.Accurately aligning the transmitter and receiver beams,i.e.beam training,is vitally important to high data rate transmission.However,it may cause huge overhead which has negative effects on initial access,handover,and tracking.Besides,the mobility patterns of users are complicated and dynamic,which may cause tracking error and large tracking latency.An efficient beam tracking method has a positive effect on sustaining robust links.This article provides an overview of the beam training and tracking technologies on mmWave bands and reveals the insights for future research in the 6th Generation(6G)mobile network.Especially,some open research problems are proposed to realize fast,accurate,and robust beam training and tracking.We hope that this survey provides guidelines for the researchers in the area of mmWave communications.
基金supported in part by the Beijing Natural Science Foundation under Grant L192031the National Key Research and Development Program under Grant 2020YFA0711303。
文摘Unmanned Aerial Vehicle(UAV)ad hoc network has achieved significant growth for its flexibility,extensibility,and high deployability in recent years.The application of clustering scheme for UAV ad hoc network is imperative to enhance the performance of throughput and energy efficiency.In conventional clustering scheme,a single cluster head(CH)is always assigned in each cluster.However,this method has some weaknesses such as overload and premature death of CH when the number of UAVs increased.In order to solve this problem,we propose a dual-cluster-head based medium access control(DCHMAC)scheme for large-scale UAV networks.In DCHMAC,two CHs are elected to manage resource allocation and data forwarding cooperatively.Specifically,two CHs work on different channels.One of CH is used for intra-cluster communication and the other one is for inter-cluster communication.A Markov chain model is developed to analyse the throughput of the network.Simulation result shows that compared with FM-MAC(flying ad hoc networks multi-channel MAC,FM-MAC),DCHMAC improves the throughput by approximately 20%~50%and prolongs the network lifetime by approximately 40%.
基金supported by the Major Research Projects of the National Natural Science Foundation of China(92267202)the National Key Research and Development Project(2020YFA0711303)the BUPT Excellent Ph.D.Students Foundation(CX2022208).
文摘Beam management,including initial access(IA)and beam tracking,is essential to the millimeter-wave Unmanned Aerial Vehicle(UAV)network.However,the conventional communicationonly and feedback-based schemes suffer a high delay and low accuracy of beam alignment,since they only enable the receiver to passively“hear”the information of the transmitter from the radio domain.This paper presents a novel sensing-assisted beam management approach,the first solution that fully utilizes the information from the visual domain to improve communication performance.We employ both integrated sensing and communication and computer vision techniques and design an extended Kalman filtering method for beam tracking and prediction.Besides,we also propose a novel dual identity association solution to distinguish multiple UAVs in dynamic environments.Real-world experiments and numerical results show that the proposed solution outperforms the conventional methods in IA delay,association accuracy,tracking error,and communication performance.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant No.2024ZCJH01in part by the National Natural Science Foundation of China(NSFC)under Grant No.62271081in part by the National Key Research and Development Program of China under Grant No.2020YFA0711302.
文摘In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communication(ISAC),as an emerging technology in 6G mobile networks,has shown great potential in improving communication performance with the assistance of sensing information.ISAC obtains the prior information about node distribution,reducing the ND time.However,the prior information obtained through ISAC may be imperfect.Hence,an ND algorithm based on reinforcement learning is proposed.The learning automaton(LA)is applied to interact with the environment and continuously adjust the probability of selecting beams to accelerate the convergence speed of ND algorithms.Besides,an efficient ND algorithm in the neighbor maintenance phase is designed,which applies the Kalman filter to predict node movement.Simulation results show that the LA-based ND algorithm reduces the ND time by up to 32%compared with the Scan-Based Algorithm(SBA),which proves the efficiency of the proposed ND algorithms.
基金supported by the National Basic Research Program of China (2009CB320400)the National Natural Science Foundation of China(60832009,61121001)+1 种基金the Program for New Century Excellent Talents in University (NCET-01-0259)the National Science and Technology Major Project of China (2012ZX03003006)
文摘As one of the key characteristics in cognitive wireless networks(CWNs),network environment awareness techniques have received much attention recently.Instead of traditional spectrum sensing technology that suffers from problems of miss detection,false alarm,hidden node,and inefficiency,cognitive pilot channel(CPC) technology has been proposed as one of the candidate solutions for an efficient and accurate network information delivery scheme to user equipment(UE).The aim of the CPC technology is to provide the necessary information for the reconfiguration of the UE using the public signaling channel.To ensure the efficient information delivery,the whole geographical area covered by the CPC is divided into square meshes of the same size.Moreover,two typical network information transmission modes for CPC deployment are also proposed:broadcast CPC mode and on-demand CPC mode.To further improve the efficiency of network information delivery,an efficient dynamic mesh grouping scheme has been designed which is based on the fractal theory for the broadcast CPC mode,where adaptive rectangular sized meshes are used to approximately cover the whole area.Compared to the traditional fixed size mesh division strategy,results show that the proposed dynamic mesh grouping scheme significantly reduces the number of meshes by grouping similar meshes together,and the average delay of receiving CPC information on the UE side is therefore reduced.