As their potential applications in various electronic devices increase, the preparation of anisotropic conjugated polymer nanostructures are highly desirable. This paper presents a review of the literature and our rec...As their potential applications in various electronic devices increase, the preparation of anisotropic conjugated polymer nanostructures are highly desirable. This paper presents a review of the literature and our recent results on the self-assembly of one-, two- and three-dimensional anisotropic nanostructures using conjugated polymers as building blocks, including the formation of one-dimensional (1D) nanofibers and nanotubes, two-dimensional (2D) nanoribbons and nanosheets, and three-dimensional (3D) superstructures. The mechanisms guiding the formation of various nanostructures are analyzed by a cooperative effect of - stacking interaction and other noncovalent interactions.展开更多
Self-assembly of chiral amphiphiles with π-conjugated tectons into one-dimensional helical nanostructures offers great potential applications in the biological,physical,and material sciences.In this review,the recent...Self-assembly of chiral amphiphiles with π-conjugated tectons into one-dimensional helical nanostructures offers great potential applications in the biological,physical,and material sciences.In this review,the recent development of supramolecular self-assembly of chiral amphiphiles with π-conjugated tectons has been discussed on the basis of experimental exploration by elegantly utilizing cooperative noncovalent forces such as π-π stacking,hydrophobic interaction,hydrogen bond and electrostatic interaction,and the potential applications of these self-assembled helical nanostructures in chiral recognition,asymmetric catalysis,electrical conduction,switchable interfaces and soft template for the fabrication of one-dimensional hard materials are described by a representative example.Meanwhile,some scientific and technical challenges in the development of supramolecular self-assembly of chiral amphiphiles with π-conjugated tectons are also presented.It is hoped that this review can summarize the strategies for self-assembling soft nanomaterials by using chiral amphiphiles with π-conjugated tectons,and also as a guideline for design functional nanomaterials for various potential applications.展开更多
The semitransparent flexible organic solar cell takes advantages of flexibility,transparency,color adjust ment property,which is more conducive to integrate on buidings and mobile terminals.Ascribing to the developmen...The semitransparent flexible organic solar cell takes advantages of flexibility,transparency,color adjust ment property,which is more conducive to integrate on buidings and mobile terminals.Ascribing to the developments of narrow band gap donors and the new non-fullerene acceptors,the power conversion efficiency of semitransparent flexible organic solar cells has been achieved 10% to 12% with average visible transmittance of 17% to 21%.This review summarizes the molecular design of the most representative layer materials,and discusses the characterization of semitransparent parameters paradigms,then we discuss how to optimize the device in combination with optical simulation,and finally list the recent development of semitransparent flexible electrodes of ITO-free organic solar cells,and give our perspectives on the next step direction.展开更多
基金the financial support of the National Natural Science Foundation of China (91027031)the Ministry of Science and Technology of China and Chinese Academy of Sciences
文摘As their potential applications in various electronic devices increase, the preparation of anisotropic conjugated polymer nanostructures are highly desirable. This paper presents a review of the literature and our recent results on the self-assembly of one-, two- and three-dimensional anisotropic nanostructures using conjugated polymers as building blocks, including the formation of one-dimensional (1D) nanofibers and nanotubes, two-dimensional (2D) nanoribbons and nanosheets, and three-dimensional (3D) superstructures. The mechanisms guiding the formation of various nanostructures are analyzed by a cooperative effect of - stacking interaction and other noncovalent interactions.
基金supported by the National Natural Science Foundation of China (91027031,21202036)the National Basic Research Program of China (2009CB930400,2012CB933001)Chinese Academy of Sciences and Henan Provincial Department of Education (2011B430001)
文摘Self-assembly of chiral amphiphiles with π-conjugated tectons into one-dimensional helical nanostructures offers great potential applications in the biological,physical,and material sciences.In this review,the recent development of supramolecular self-assembly of chiral amphiphiles with π-conjugated tectons has been discussed on the basis of experimental exploration by elegantly utilizing cooperative noncovalent forces such as π-π stacking,hydrophobic interaction,hydrogen bond and electrostatic interaction,and the potential applications of these self-assembled helical nanostructures in chiral recognition,asymmetric catalysis,electrical conduction,switchable interfaces and soft template for the fabrication of one-dimensional hard materials are described by a representative example.Meanwhile,some scientific and technical challenges in the development of supramolecular self-assembly of chiral amphiphiles with π-conjugated tectons are also presented.It is hoped that this review can summarize the strategies for self-assembling soft nanomaterials by using chiral amphiphiles with π-conjugated tectons,and also as a guideline for design functional nanomaterials for various potential applications.
基金the Fund of the Ministry of Science and Technology of China(No.2016YFA0200700)the National Natural Science Foundation of China(Nos.21534003,91427302,51773047,21604017,21504066)。
文摘The semitransparent flexible organic solar cell takes advantages of flexibility,transparency,color adjust ment property,which is more conducive to integrate on buidings and mobile terminals.Ascribing to the developments of narrow band gap donors and the new non-fullerene acceptors,the power conversion efficiency of semitransparent flexible organic solar cells has been achieved 10% to 12% with average visible transmittance of 17% to 21%.This review summarizes the molecular design of the most representative layer materials,and discusses the characterization of semitransparent parameters paradigms,then we discuss how to optimize the device in combination with optical simulation,and finally list the recent development of semitransparent flexible electrodes of ITO-free organic solar cells,and give our perspectives on the next step direction.