Objective To investigate the kinetics of quinoline biodegradation by Burkholderia pickttii, a Gram negative rod-shaped aerobe, isolated in our laboratory. Methods HPLC (Hewlett-Packard model 5050 with an UV detector) ...Objective To investigate the kinetics of quinoline biodegradation by Burkholderia pickttii, a Gram negative rod-shaped aerobe, isolated in our laboratory. Methods HPLC (Hewlett-Packard model 5050 with an UV detector) was used for the analysis of quinoline concentration. GC/MS method was used to identify the intermediate metabolites of quinoline degradation. Results The biodegradation of quinoline was inhibited by quinoline at a high concentration, and the degradation process could be described by the Haldane model. The kinetic parameters based on Haldane substrate inhibition were evaluated. The values were v = 0.44 h-1,Ks=166.7 mg/L, Ki= 650 mg/L, respectively. The quinoline concentration to avoid substrate inhibition was inferred theoretically and determined to be 329 mg/L. Conclusion The biodegradation of quinoline conforms to the Haldane inhibition model and the main intermediate metabolite of quinoline biodegradation is 2-hydroxy-quinoline.展开更多
Objective To investigate the characteristics of microbial degradation of aniline by a stable bacterial consortium. Methods The bacterial consortium was isolated from activated sludge treating chemical wastewater using...Objective To investigate the characteristics of microbial degradation of aniline by a stable bacterial consortium. Methods The bacterial consortium was isolated from activated sludge treating chemical wastewater using aniline as the sole source of carbon and nitrogen by enrichment and isolation technique. The biomass was measured as optical density (OD) at 510 run using a spectrophotometer. Aniline concentrations were determined by spectrophotometer. The intermediates of aniline degradation were identified by GC/MS method. Results The bacterial consortium could grow at a range of aniline concentrations between 50 and 500 mg/L. The optimal pH and temperature for aniline degradation were determined to be 7.0 and 30, respectively. The presence of NH4NO3 as an additional nitrogen source (100-500 mg/L) had no adverse effect on bacterial growth and aniline degradation. The presence of heavy metal ions, such as Co2+, Zn2+, Ni2+, Mn2+ and Cu2+ had an inhibitory effect on aniline degradation. Conclusions The isolated bacterial consortium can degrade aniline up to 500 mg/L effectively and tolerate some heavy metal ions that commonly exist in chemical wastewater. It has a potential to be applied in the practical treatment of aniline-containing wastewater.展开更多
基金The work was supported by the National Natural Science Foundation of China (Grant No. 29637010 50325824).
文摘Objective To investigate the kinetics of quinoline biodegradation by Burkholderia pickttii, a Gram negative rod-shaped aerobe, isolated in our laboratory. Methods HPLC (Hewlett-Packard model 5050 with an UV detector) was used for the analysis of quinoline concentration. GC/MS method was used to identify the intermediate metabolites of quinoline degradation. Results The biodegradation of quinoline was inhibited by quinoline at a high concentration, and the degradation process could be described by the Haldane model. The kinetic parameters based on Haldane substrate inhibition were evaluated. The values were v = 0.44 h-1,Ks=166.7 mg/L, Ki= 650 mg/L, respectively. The quinoline concentration to avoid substrate inhibition was inferred theoretically and determined to be 329 mg/L. Conclusion The biodegradation of quinoline conforms to the Haldane inhibition model and the main intermediate metabolite of quinoline biodegradation is 2-hydroxy-quinoline.
基金The work was supported by the National Natural Science Foundation of China (Grant No. 29637010)
文摘Objective To investigate the characteristics of microbial degradation of aniline by a stable bacterial consortium. Methods The bacterial consortium was isolated from activated sludge treating chemical wastewater using aniline as the sole source of carbon and nitrogen by enrichment and isolation technique. The biomass was measured as optical density (OD) at 510 run using a spectrophotometer. Aniline concentrations were determined by spectrophotometer. The intermediates of aniline degradation were identified by GC/MS method. Results The bacterial consortium could grow at a range of aniline concentrations between 50 and 500 mg/L. The optimal pH and temperature for aniline degradation were determined to be 7.0 and 30, respectively. The presence of NH4NO3 as an additional nitrogen source (100-500 mg/L) had no adverse effect on bacterial growth and aniline degradation. The presence of heavy metal ions, such as Co2+, Zn2+, Ni2+, Mn2+ and Cu2+ had an inhibitory effect on aniline degradation. Conclusions The isolated bacterial consortium can degrade aniline up to 500 mg/L effectively and tolerate some heavy metal ions that commonly exist in chemical wastewater. It has a potential to be applied in the practical treatment of aniline-containing wastewater.