It is necessary to test for varying dispersion in generalized nonlinear models.Wei,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponent...It is necessary to test for varying dispersion in generalized nonlinear models.Wei,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponential family nonlinear models.This type of problem in the framework of general discrete exponential family nonlinear models is discussed.Two types of varying dispersion,which are random coefficients model and random effects model,are proposed,and corresponding score test statistics are constructed and expressed in simple,easy to use,matrix formulas.展开更多
A modified Bates and Watts geometric framework is proposed for quasi\|likelihood nonlinear models in Euclidean inner product space.Based on the modified geometric framework,some asymptotic inference in terms of curvat...A modified Bates and Watts geometric framework is proposed for quasi\|likelihood nonlinear models in Euclidean inner product space.Based on the modified geometric framework,some asymptotic inference in terms of curvatures for quasi\|likelihood nonlinear models is studied.Several previous results for nonlinear regression models and exponential family nonlinear models etc.are extended to quasi\|likelihood nonlinear models.展开更多
In 1980's, differential geometric methods are successfully used to study curved exponential families and normal nonlinear repression models. This paper presents a new geometric structure to study multinomial distr...In 1980's, differential geometric methods are successfully used to study curved exponential families and normal nonlinear repression models. This paper presents a new geometric structure to study multinomial distributipn models which contain a set of nonlinear parameters. Based on this geometric structure, the authors study several asymptotic properties for sequential estimation. The bias, the variance and the information loss of the sequeatial estimates are given from geometric viewpoint, and a limit theorem connected with the obServed and expected Fisher information is obtained ill terms of curVature measures. The results show that the sequeotial estimation procedure has some better properties which are generally impossible for nonsequeotial estimation procedures.展开更多
基金Supported by the National Natural Science Foundations of China( 1 9631 0 4 0 ) and SSFC( o2 BTJ0 0 1 ) .
文摘It is necessary to test for varying dispersion in generalized nonlinear models.Wei,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponential family nonlinear models.This type of problem in the framework of general discrete exponential family nonlinear models is discussed.Two types of varying dispersion,which are random coefficients model and random effects model,are proposed,and corresponding score test statistics are constructed and expressed in simple,easy to use,matrix formulas.
基金The project supported by NSFC!(19631040)NSFJ!(BK99002)
文摘A modified Bates and Watts geometric framework is proposed for quasi\|likelihood nonlinear models in Euclidean inner product space.Based on the modified geometric framework,some asymptotic inference in terms of curvatures for quasi\|likelihood nonlinear models is studied.Several previous results for nonlinear regression models and exponential family nonlinear models etc.are extended to quasi\|likelihood nonlinear models.
文摘In 1980's, differential geometric methods are successfully used to study curved exponential families and normal nonlinear repression models. This paper presents a new geometric structure to study multinomial distributipn models which contain a set of nonlinear parameters. Based on this geometric structure, the authors study several asymptotic properties for sequential estimation. The bias, the variance and the information loss of the sequeatial estimates are given from geometric viewpoint, and a limit theorem connected with the obServed and expected Fisher information is obtained ill terms of curVature measures. The results show that the sequeotial estimation procedure has some better properties which are generally impossible for nonsequeotial estimation procedures.