We have reported that cDNA derived from entire coat protein (CP) gene of potato virus Y (PVY) could induce resistance to PVY infection in transgenic tobacco plants, and the resistance was further demonstrated to be RN...We have reported that cDNA derived from entire coat protein (CP) gene of potato virus Y (PVY) could induce resistance to PVY infection in transgenic tobacco plants, and the resistance was further demonstrated to be RNA-mediated rather than coat protein-mediated. In this study, we cloned cDNA fragments of 202 bp, 417 bp, and 603 bp in length derived from the 3′ end of the PVY CP gene, and the cDNA fragments were introduced into tobacco (var. NC89) plants via Agrobacterium-mediated transformation system. The results of resistance assay showed that the CP cDNA fragments of 417 bp and 603 bp could confer resistance of the trans-genic plants to PVY infection, but the fragment of 202 bp in length could not. Molecular analysis revealed that the resistance was RNA-mediated, which is believed to be a result of post-transcriptional gene silencing. The results indicate that the length of cDNA fragments needed for resistance induction was located somewhere between 202 bp and 417 bp from the 3′ end of PVY CP gene.展开更多
Due to the immobility of plants,around 75% of 1100 plant virus species are piercing-sucking insect transmitted.Host plant-mediated interactions between viruses and insects play vital roles in the population dynamics o...Due to the immobility of plants,around 75% of 1100 plant virus species are piercing-sucking insect transmitted.Host plant-mediated interactions between viruses and insects play vital roles in the population dynamics of vectors and the epidemiology of plant diseases.A successful viral pathogen has to evolve multiple strategies to manipulate host immune responses and also the ecological environment to facilitate effective transmission by insect vectors.Among these strategies,reprogramming the phytohormone signaling pathways is critical to the establishment of an effective virus transmission among plants and disease pandemic.Here,we review recent studies on the plant-virus inter-relationships with a focus on molecular and biochemical mechanisms that drive vector-borne viral diseases.Defense-related phytohormones such as Jasmonic acid(JA),Salicylic acid(SA)and Ethylene(ET)have been reported to be directly regulated by viral proteins.This knowledge is essential for the further design and/or development of effective and sustainable strategies to protect viral damages so as to increase crop yield and food security.Future efforts in this area should be focused on integrating and meta-analysis of big data generating from dynamics and multiple dimensional pathogen-vector-crop interactions under real agricultural conditions to achieve sustainable protection against plant diseases.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.30270875)Shandong Province Natural Science Foundation(Grant No.Z2000D02)Shandong Province Science and Technology Development Project.
文摘We have reported that cDNA derived from entire coat protein (CP) gene of potato virus Y (PVY) could induce resistance to PVY infection in transgenic tobacco plants, and the resistance was further demonstrated to be RNA-mediated rather than coat protein-mediated. In this study, we cloned cDNA fragments of 202 bp, 417 bp, and 603 bp in length derived from the 3′ end of the PVY CP gene, and the cDNA fragments were introduced into tobacco (var. NC89) plants via Agrobacterium-mediated transformation system. The results of resistance assay showed that the CP cDNA fragments of 417 bp and 603 bp could confer resistance of the trans-genic plants to PVY infection, but the fragment of 202 bp in length could not. Molecular analysis revealed that the resistance was RNA-mediated, which is believed to be a result of post-transcriptional gene silencing. The results indicate that the length of cDNA fragments needed for resistance induction was located somewhere between 202 bp and 417 bp from the 3′ end of PVY CP gene.
基金supported by the Excellent Young Scientists Fund(Grant No.31522046)Chinese Academy of Sciences(Strategic Priority Research Program Grant No.XDB11040300)State Key Laboratory of Plant Genomics,China to Ye Jian
文摘Due to the immobility of plants,around 75% of 1100 plant virus species are piercing-sucking insect transmitted.Host plant-mediated interactions between viruses and insects play vital roles in the population dynamics of vectors and the epidemiology of plant diseases.A successful viral pathogen has to evolve multiple strategies to manipulate host immune responses and also the ecological environment to facilitate effective transmission by insect vectors.Among these strategies,reprogramming the phytohormone signaling pathways is critical to the establishment of an effective virus transmission among plants and disease pandemic.Here,we review recent studies on the plant-virus inter-relationships with a focus on molecular and biochemical mechanisms that drive vector-borne viral diseases.Defense-related phytohormones such as Jasmonic acid(JA),Salicylic acid(SA)and Ethylene(ET)have been reported to be directly regulated by viral proteins.This knowledge is essential for the further design and/or development of effective and sustainable strategies to protect viral damages so as to increase crop yield and food security.Future efforts in this area should be focused on integrating and meta-analysis of big data generating from dynamics and multiple dimensional pathogen-vector-crop interactions under real agricultural conditions to achieve sustainable protection against plant diseases.