期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mitophagy in intracerebral hemorrhage:a new target for therapeutic intervention
1
作者 Yiyang Chen wenxuan tang +5 位作者 Xinqi Huang Yumei An Jiawen Li Shengye Yuan Haiyan Shan Mingyang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期316-323,共8页
Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Re... Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae.However,there is currently no treatment available for intracerebral hemorrhage,unlike for other stroke subtypes.Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage.Mitophagy,or selective autophagy of mitochondria,is an essential pathway to preserve mitochondrial homeostasis by clearing up damaged mitochondria.Mitophagy markedly contributes to the reduction of secondary brain injury caused by mitochondrial dysfunction after intracerebral hemorrhage.This review provides an overview of the mitochondrial dysfunction that occurs after intracerebral hemorrhage and the underlying mechanisms regarding how mitophagy regulates it,and discusses the new direction of therapeutic strategies targeting mitophagy for intracerebral hemorrhage,aiming to determine the close connection between mitophagy and intracerebral hemorrhage and identify new therapies to modulate mitophagy after intracerebral hemorrhage.In conclusion,although only a small number of drugs modulating mitophagy in intracerebral hemorrhage have been found thus far,most of which are in the preclinical stage and require further investigation,mitophagy is still a very valid and promising therapeutic target for intracerebral hemorrhage in the long run. 展开更多
关键词 intracerebral hemorrhage mitochondrial dysfunction MITOPHAGY NEUROINFLAMMATION NEUROPROTECTION reactive oxygen species secondary brain injury therapeutic target
下载PDF
Six-channel programmable coding metasurface simultaneously for orthogonal circular and linear polarizations
2
作者 TONGHAO LIU YUEYU MENG +9 位作者 JIAFU WANG HUA MA RUICHAO ZHU CHAO LIU WEIHAN LI ZUNTIAN CHU SAI SUI TIANSHUO QIU wenxuan tang SHAOBO QU 《Photonics Research》 SCIE EI CAS CSCD 2023年第6期1047-1056,共10页
Metasurfaces have intrigued long-standing research interests and developed multitudinous compelling applications owing to their unprecedented capability for manipulating electromagnetic waves,and the emerging programm... Metasurfaces have intrigued long-standing research interests and developed multitudinous compelling applications owing to their unprecedented capability for manipulating electromagnetic waves,and the emerging programmable coding metasurfaces(PCMs)provide a real-time reconfigurable platform to dynamically implement customized functions.Nevertheless,most existing PCMs can only act on the single polarization state or perform in the limited polarization channel,which immensely restricts their practical application in multitask intelligent metadevices.Herein,an appealing strategy of the PCM is proposed to realize tunable functions in co-polarized reflection channels of orthogonal circularly polarized waves and in co-polarized and cross-polarized reflection channels of orthogonal linearly polarized waves from 9.0 to 10.5 GHz.In the above six channels,the spindecoupled programmable meta-atom can achieve high-efficiency reflection and 1-bit digital phase modulation by selecting the specific ON/OFF states of two diodes,and the phase coding sequence of the PCM is dynamically regulated by the field-programmable gate array to generate the desired function.A proof-of-concept prototype is constructed to verify the feasibility of our methodology,and numerous simulation and experimental results are in excellent agreement with the theoretical predictions.This inspiring design opens a new avenue for constructing intelligent metasurfaces with higher serviceability and flexibility,and has tremendous application potential in communication,sensing,and other multifunctional smart metadevices. 展开更多
关键词 polarization CHANNEL POLARIZED
原文传递
Glide symmetry for mode control and significant suppression of coupling in dual-strip SSPP transmission lines 被引量:1
3
作者 Xiao Tian Yan wenxuan tang +3 位作者 Jun Feng Liu Meng Wang Xin Xin Gao Tie Jun Cui 《Advanced Photonics》 EI CSCD 2021年第2期68-77,共10页
Glide symmetry,which is one kind of higher symmetry,is introduced in a special type of plasmonic metamaterial,the transmission lines(TLs)of spoof surface plasmon polaritons(SSPPs),in order to control the dispersion ch... Glide symmetry,which is one kind of higher symmetry,is introduced in a special type of plasmonic metamaterial,the transmission lines(TLs)of spoof surface plasmon polaritons(SSPPs),in order to control the dispersion characteristics and modal fields of the SSPPs.We show that the glide-symmetric TL presents merged pass bands and mode degeneracy,which lead to broad working bandwidth and extremely low coupling between neighboring TLs.Dual-conductor SSPP TLs with and without glide symmetry are arranged in parallel as two channels with very deep subwavelength separation(e.g.,λ0∕100 at 5 GHz)for the application of integrated circuits and systems.Mutual coupling between the hybrid channels is analyzed using coupled mode theory and characterized in terms of scattering parameters and near-field distributions.We demonstrate theoretically and experimentally that the hybrid TL array obtains significantly more suppressed crosstalk than the uniform array of two nonglide symmetric TLs.Hence,it is concluded that the glide symmetry can be adopted to flexibly design the propagation of SSPPs and benefit the development of highly compact plasmonic circuits. 展开更多
关键词 glide symmetry spoof surface plasmon polaritons dispersion control mode degeneracy coupling suppression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部