Estrogen receptor alpha(ERα/ESR1)is overexpressed in over half of all breast cancers and is considered a valuable therapeutic target in ERαpositive breast cancer.Here,we designed a membrane-permeant Chaperonemediate...Estrogen receptor alpha(ERα/ESR1)is overexpressed in over half of all breast cancers and is considered a valuable therapeutic target in ERαpositive breast cancer.Here,we designed a membrane-permeant Chaperonemediated Autophagy Targeting Chimeras(CMATAC)peptide to knockdown endogenous ERαprotein through chaperone-mediated autophagy.The peptide contains a cell membrane-penetrating peptide(TAT)that allows the peptide to by-pass the plasma membrane,anαI peptide as a protein-binding peptide(PBD)that binds specifically to ERα,and CMA-targeting peptide(CTM)that targeting chaperone-mediated autophagy.We validated that ERαtargeting peptide was able to target and degrade ERαto reduce the viability of ERαpositive breast cancer cells.Taken together,our studies provided a new method to reduce the level of intracellular ERαprotein via CMATAC,and thus may provide a new strategy for the treatment of ERαpositive breast cancer.展开更多
基金the National Natural Science Foundation of China(Grant Nos:81272260&81572712 to L.Chen)Natural Science Fund for Distinguished Young Scholars of Jiangsu Province(SBK2020010058)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Estrogen receptor alpha(ERα/ESR1)is overexpressed in over half of all breast cancers and is considered a valuable therapeutic target in ERαpositive breast cancer.Here,we designed a membrane-permeant Chaperonemediated Autophagy Targeting Chimeras(CMATAC)peptide to knockdown endogenous ERαprotein through chaperone-mediated autophagy.The peptide contains a cell membrane-penetrating peptide(TAT)that allows the peptide to by-pass the plasma membrane,anαI peptide as a protein-binding peptide(PBD)that binds specifically to ERα,and CMA-targeting peptide(CTM)that targeting chaperone-mediated autophagy.We validated that ERαtargeting peptide was able to target and degrade ERαto reduce the viability of ERαpositive breast cancer cells.Taken together,our studies provided a new method to reduce the level of intracellular ERαprotein via CMATAC,and thus may provide a new strategy for the treatment of ERαpositive breast cancer.