The design of notch and barrier was optimized in order to improve the characteristics of constant torque while minimizing the cogging torque that occurs as a result of teeth and slot structure. The barrier was install...The design of notch and barrier was optimized in order to improve the characteristics of constant torque while minimizing the cogging torque that occurs as a result of teeth and slot structure. The barrier was installed in order to minimize the cogging torque and torque ripple by finite element method (FEM) with a reduced barrier width toward the center of magnetic pole. The position and width of notch, which can offset cogging torque, can be calculated with energy distribution of air-gap using Fourier series. The optimized model demonstrates a 60% decrease in the cogging torque, a 75.3% decrease in the torque ripple and a 3% increase in the operating torque when compared with the basic model.展开更多
基金Research financially supported by Human Resource Training Project for Regional Innovation of Ministry of Education,Science and Technology(MEST)National Research Foundation(NRF)the Second Stage of Brain Korea 21 Projects,Korea
文摘The design of notch and barrier was optimized in order to improve the characteristics of constant torque while minimizing the cogging torque that occurs as a result of teeth and slot structure. The barrier was installed in order to minimize the cogging torque and torque ripple by finite element method (FEM) with a reduced barrier width toward the center of magnetic pole. The position and width of notch, which can offset cogging torque, can be calculated with energy distribution of air-gap using Fourier series. The optimized model demonstrates a 60% decrease in the cogging torque, a 75.3% decrease in the torque ripple and a 3% increase in the operating torque when compared with the basic model.