期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
我国高校帆船运动的现状及开展策略研究 被引量:1
1
作者 吴飞腾 葛冯敏 《体育科学研究》 2021年第4期35-40,共6页
通过文献资料法、专家访谈法、实地考察法,对我国高校开展帆船运动的现状进行调查研究,分析了我国高校帆船运动开展的环境因素,发现帆船运动在高校中的开展面临着帆船项目资金短缺、帆船运动认识偏差、学生海洋意识薄弱等困境,也面临着... 通过文献资料法、专家访谈法、实地考察法,对我国高校开展帆船运动的现状进行调查研究,分析了我国高校帆船运动开展的环境因素,发现帆船运动在高校中的开展面临着帆船项目资金短缺、帆船运动认识偏差、学生海洋意识薄弱等困境,也面临着休闲时代的到来和体育旅游转型等机遇。建议在未来的发展中,注重“供给侧”结构性改革,着力培养帆船行业人才,探索将学生海洋意识培养融入思想政治教育,激发学生对海洋的热爱,以期为我国高校的帆船运动发展提供参考。 展开更多
关键词 高校 帆船运动 发展策略
下载PDF
A life-prediction method for lithium-ion batteries based on a fusion model and an attention mechanism 被引量:1
2
作者 WANG Xian-bao wu fei-teng YAO Ming-hai 《Optoelectronics Letters》 EI 2020年第6期410-417,共8页
The current life-prediction models for lithium-ion batteries have several problems, such as the construction of complex feature structures, a high number of feature dimensions, and inaccurate prediction results. To ov... The current life-prediction models for lithium-ion batteries have several problems, such as the construction of complex feature structures, a high number of feature dimensions, and inaccurate prediction results. To overcome these problems, this paper proposes a deep-learning model combining an autoencoder network and a long short-term memory network. First, this model applies the characteristics of the autoencoder to reduce the dimensionality of the high-dimensional features extracted from the battery data set and realize the fusion of complex time-domain features, which overcomes the problems of redundant model information and low computational efficiency. This model then uses a long short-term memory network that is sensitive to time-series data to solve the long-path dependence problem in the prediction of battery life. Lastly, the attention mechanism is used to give greater weight to features that have a greater impact on the target value, which enhances the learning effect of the model on the long input sequence. To verify the efficacy of the proposed model, this paper uses NASA's lithium-ion battery cycle life data set. 展开更多
关键词 A life-prediction method for lithium-ion batteries based on a fusion model and an attention mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部