The Qinghai-Tibet Plateau(QTP)possesses the largest areas of permafrost in the midand low latitude regions on the earth and many large lakes in the permafrost area.Based on a comprehensive investigation around certain...The Qinghai-Tibet Plateau(QTP)possesses the largest areas of permafrost in the midand low latitude regions on the earth and many large lakes in the permafrost area.Based on a comprehensive investigation around certain typical lakes,this study found that although the presence of lakes formed different ranges of unfrozen zones in permafrost,the heating effect of lake water on surrounding permafrost is limited to a small extent.The temperature of permafrost around the lake is closely related to the distance to the lake and the ice content of the permafrost.Around lakes are ice-rich permafrost zones and permafrost temperature in this area is significantly lower than that far away from the lake,which indicates that the existence of lakes in the QTP has special effect on the permafrost distribution.Based on the monitoring results,this study presents the typical distribution pattern of the permafrost around large lakes and discusses the reasons for the distribution pattern.Due to the huge area of lakes and the significant impact of lakes on permafrost distribution,it is suggested to re-estimate the total permafrost area and underground ice storage in the QTP.展开更多
Engineering construction has major influence on the permafrost environment.This paper analyzes the interaction between engineering construction and permafrost environment along the Chaidaer-Muli Railway(simply,CMR) ba...Engineering construction has major influence on the permafrost environment.This paper analyzes the interaction between engineering construction and permafrost environment along the Chaidaer-Muli Railway(simply,CMR) based on the press-state-response(PSR) framework.The permafrost environmental system is divided into three subsystems,consisting of permafrost thermal stability,proneness to the freeze-thawing erosion and permafrost ecological fragility.Each subsystem considers its most important influencing factors.Catastrophe Progression Method(CPM) is applied to calculate the current environment condition along the railway.The result indicates that:(1) as far as the thermal stability is concerned,most sections along the CMR are mainly concentrated in rank Ⅲ(fair situation),and a few in Ⅱ(good situation) and Ⅳ(bad situation),respectively;(2) for the proneness tothe freeze-thawing erosion,the entire railway route falls largely in rank Ⅱ(good situation);(3) along the CMR,the ecological fragility of the permafrost environment is in rank Ⅱ(good situation),or slightly fragile;(4) overall,the permafrost environments along the CMR are in rank Ⅲ(fair situation) or Ⅱcondition(good situation).In general,the permafrost environment along the CMR is fair.It is mainly because a series of active measures of protecting permafrost were taken for stabilizing the CMR foundation soils.On the one hand,we should try our best to minimize the influences that engineering activities have exerted on ecology and environment,on the other hand,the positive measures have made improvements to prevent the permafrost environment from deterioration.展开更多
The characteristics of the permafrost along National Highway No. 214(G214) in Qinghai province(between kilometer markers K310 and K670),including the distribution patterns of permafrost and seasonally frozen ground(SF...The characteristics of the permafrost along National Highway No. 214(G214) in Qinghai province(between kilometer markers K310 and K670),including the distribution patterns of permafrost and seasonally frozen ground(SFG), ground ice content and mean annual ground temperature(MAGT), were analyzed using a large quantity of drilling and measured ground temperature data. Three topographic units can be distinguished along the highway: the northern mountains, including Ela Mountain and Longstone Mountain; the medial alluvial plain and the southern Bayan Har Mountains.The horizontal distribution patterns of permafrost can be divided into four sections, from north to south: the northern continuous permafrost zone(K310-K460),the island permafrost zone(K460-K560), the southern continuous permafrost zone(K560-K630),and the discontinuous permafrost zone(K630-K670).Vertically, the permafrost lower limits(PLLs) of the discontinuous zone were 4200/4325 m, 4230/4350 m,and 4350/4450 m on the north-facing/south-facing slopes of Ela Mountain, Longstone Mountain and Bayan Har Mountains, respectively. The permafrost was generally warm, with MAGTs between-1.0°C and0°C in the northern continuous permafrost zone,approximately-0.5°C in the island permafrost zone,between-1.5°C and 0°C in the southern continuous permafrost zone, and higher than-0.5°C in the discontinuous permafrost zone. In contrast, the spatial variations in ground ice content were mainly controlled by the local soil water content and lithology.The relationships between the mean annual air temperature(MAAT) and the PLLs indicated that the PLLs varied between-3.3°C and-4.1°C for the northern Ela and Longstone Mountains and between-4.1°C and-4.6°C in the southern Bayan Har Mountains.展开更多
The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions.Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet ...The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions.Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study.The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree(CART) is adopted to identify the main controlling factors influencing the soil moisture movement. The relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis(CCA). The results show that: 1) Due to the terrain slope and the freezing-thawing process, the horizontal flow weakens in the freezing period. The vertical migration of the soil moisture movement strengthens. It will lead to that the soil-moisture content in the up-slope is higher than that in the down-slope. The conclusion is contrary during the melting period. 2) Elevation, soil texture, soil temperature and vegetation coverage are the main environmental factors which affect the slopepermafrost soil-moisture. 3) Slope, elevation and vegetation coverage are the main factors that affect the slope-permafrost soil-moisture at the shallow depth of 0-20 cm. It is complex at the middle and lower depth.展开更多
As soil cation exchange capacity (CEC) is a vital indicator of soil quality and pollutant sequestration capacity,a study was conducted to evaluate cokriging of CEC with the principal components derived from soil phy...As soil cation exchange capacity (CEC) is a vital indicator of soil quality and pollutant sequestration capacity,a study was conducted to evaluate cokriging of CEC with the principal components derived from soil physico-chemical properties.In Qingdao,China,107 soil samples were collected.Soil CEC was estimated by using 86 soil samples for prediction and 21 soil samples for test.The first two principal components (PC1 and PC2) together explained 60.2% of the total variance of soil physico-chemical properties.The PC1 was highly correlated with CEC (r=0.76,P0.01),whereas there was no significant correlation between CEC and PC2 (r=0.03).The PC1 was then used as an auxiliary variable for the prediction of soil CEC.Mean error (ME) and root mean square error (RMSE) of kriging for the test dataset were-1.76 and 3.67 cmolc kg-1,and ME and RMSE of cokriging for the test dataset were-1.47 and 2.95 cmolc kg-1,respectively.The cross-validation R2 for the prediction dataset was 0.24 for kriging and 0.39 for cokriging.The results show that cokriging with PC1 is more reliable than kriging for spatial interpolation.In addition,principal components have the highest potential for cokriging predictions when the principal components have good correlations with the primary variables.展开更多
Geophysical methods have been applied to a wide range of hydrogeological problems. With improvement in geophysical inversion algorithms and measurement tools, significant achievements have been made in the characteriz...Geophysical methods have been applied to a wide range of hydrogeological problems. With improvement in geophysical inversion algorithms and measurement tools, significant achievements have been made in the characterization of subsurface architecture, time-lapse monitoring of hydrogeological process and contaminant plumes delineation. In this paper, we summarize the geophysical methods that are most widely used in hydrogeology including Electrical Resistivity Tomography(ERT), Induced Polarization(IP), Ground Penetrating Radar(GPR) and Electromagnetic Induction(EMI). Three examples including lab and field works are used to demonstrate current application of geophysical methods for characterizing subsurface architecture and contaminant plumes. Though great progress has been made in hydrogeohysics over the last few decades at home and abroad, challenges still remain in practical applications. More recently, hydrogeophysics continues to develop in the areas of establishment of hydrogeophysical models, large-scale architecture characterization, uncertainty analysis, biogeochemical process monitoring and ecosystem science.展开更多
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA23060703)the National Natural Science Foundation of China(41671068)the State Key Laboratory of Cryospheric Science(SKLCS-ZZ-2023)。
文摘The Qinghai-Tibet Plateau(QTP)possesses the largest areas of permafrost in the midand low latitude regions on the earth and many large lakes in the permafrost area.Based on a comprehensive investigation around certain typical lakes,this study found that although the presence of lakes formed different ranges of unfrozen zones in permafrost,the heating effect of lake water on surrounding permafrost is limited to a small extent.The temperature of permafrost around the lake is closely related to the distance to the lake and the ice content of the permafrost.Around lakes are ice-rich permafrost zones and permafrost temperature in this area is significantly lower than that far away from the lake,which indicates that the existence of lakes in the QTP has special effect on the permafrost distribution.Based on the monitoring results,this study presents the typical distribution pattern of the permafrost around large lakes and discusses the reasons for the distribution pattern.Due to the huge area of lakes and the significant impact of lakes on permafrost distribution,it is suggested to re-estimate the total permafrost area and underground ice storage in the QTP.
基金supported by the Major State Basic Research Development Program of China (No.2013CBA01803)the National Natural Science Foundation of China (No.41271084 and 41501079)+1 种基金the Project Funded by China Postdoctoral Science Foundation (No.2015M582724 and 2016T90962)the Chinese Academy of Sciences (CAS) Key Research Program (No.KZZD-EW-13)
文摘Engineering construction has major influence on the permafrost environment.This paper analyzes the interaction between engineering construction and permafrost environment along the Chaidaer-Muli Railway(simply,CMR) based on the press-state-response(PSR) framework.The permafrost environmental system is divided into three subsystems,consisting of permafrost thermal stability,proneness to the freeze-thawing erosion and permafrost ecological fragility.Each subsystem considers its most important influencing factors.Catastrophe Progression Method(CPM) is applied to calculate the current environment condition along the railway.The result indicates that:(1) as far as the thermal stability is concerned,most sections along the CMR are mainly concentrated in rank Ⅲ(fair situation),and a few in Ⅱ(good situation) and Ⅳ(bad situation),respectively;(2) for the proneness tothe freeze-thawing erosion,the entire railway route falls largely in rank Ⅱ(good situation);(3) along the CMR,the ecological fragility of the permafrost environment is in rank Ⅱ(good situation),or slightly fragile;(4) overall,the permafrost environments along the CMR are in rank Ⅲ(fair situation) or Ⅱcondition(good situation).In general,the permafrost environment along the CMR is fair.It is mainly because a series of active measures of protecting permafrost were taken for stabilizing the CMR foundation soils.On the one hand,we should try our best to minimize the influences that engineering activities have exerted on ecology and environment,on the other hand,the positive measures have made improvements to prevent the permafrost environment from deterioration.
基金supported financially by the Chinese Academy of Sciences (CAS) Key Research Program (Grant No. KZZD-EW-13)the Major State Basic Research Development Program of China (Grant No. 2013CBA01803)+2 种基金the National Natural Science Foundation of China (Grant No. 41271084)the Research Program of State Key Laboratory of Frozen Soil Engineering of Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (Grant No. SKLFSE-ZT-10)the Natural Science Foundation of Gansu Province (Grant No. 145RJY304)
文摘The characteristics of the permafrost along National Highway No. 214(G214) in Qinghai province(between kilometer markers K310 and K670),including the distribution patterns of permafrost and seasonally frozen ground(SFG), ground ice content and mean annual ground temperature(MAGT), were analyzed using a large quantity of drilling and measured ground temperature data. Three topographic units can be distinguished along the highway: the northern mountains, including Ela Mountain and Longstone Mountain; the medial alluvial plain and the southern Bayan Har Mountains.The horizontal distribution patterns of permafrost can be divided into four sections, from north to south: the northern continuous permafrost zone(K310-K460),the island permafrost zone(K460-K560), the southern continuous permafrost zone(K560-K630),and the discontinuous permafrost zone(K630-K670).Vertically, the permafrost lower limits(PLLs) of the discontinuous zone were 4200/4325 m, 4230/4350 m,and 4350/4450 m on the north-facing/south-facing slopes of Ela Mountain, Longstone Mountain and Bayan Har Mountains, respectively. The permafrost was generally warm, with MAGTs between-1.0°C and0°C in the northern continuous permafrost zone,approximately-0.5°C in the island permafrost zone,between-1.5°C and 0°C in the southern continuous permafrost zone, and higher than-0.5°C in the discontinuous permafrost zone. In contrast, the spatial variations in ground ice content were mainly controlled by the local soil water content and lithology.The relationships between the mean annual air temperature(MAAT) and the PLLs indicated that the PLLs varied between-3.3°C and-4.1°C for the northern Ela and Longstone Mountains and between-4.1°C and-4.6°C in the southern Bayan Har Mountains.
基金supported by the National Natural Science Foundation of China(Grant No.41501079 and 91647103)Funded by State Key Laboratory of Frozen Soil Engineering(Grant No.SKLFSE-ZQ-43)+1 种基金the Chinese Academy of Sciences(CAS)Key Research Program(Grant No.KZZD-EW-13)the Foundation for Excellent Youth Scholars of NIEER,CAS
文摘The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions.Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study.The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree(CART) is adopted to identify the main controlling factors influencing the soil moisture movement. The relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis(CCA). The results show that: 1) Due to the terrain slope and the freezing-thawing process, the horizontal flow weakens in the freezing period. The vertical migration of the soil moisture movement strengthens. It will lead to that the soil-moisture content in the up-slope is higher than that in the down-slope. The conclusion is contrary during the melting period. 2) Elevation, soil texture, soil temperature and vegetation coverage are the main environmental factors which affect the slopepermafrost soil-moisture. 3) Slope, elevation and vegetation coverage are the main factors that affect the slope-permafrost soil-moisture at the shallow depth of 0-20 cm. It is complex at the middle and lower depth.
基金funded by the National Natural Science Foundation of China (40771095,40725010 and 41030746)the Water Conservancy Science and Technology Foundation of Qingdao City,China (2006003)
文摘As soil cation exchange capacity (CEC) is a vital indicator of soil quality and pollutant sequestration capacity,a study was conducted to evaluate cokriging of CEC with the principal components derived from soil physico-chemical properties.In Qingdao,China,107 soil samples were collected.Soil CEC was estimated by using 86 soil samples for prediction and 21 soil samples for test.The first two principal components (PC1 and PC2) together explained 60.2% of the total variance of soil physico-chemical properties.The PC1 was highly correlated with CEC (r=0.76,P0.01),whereas there was no significant correlation between CEC and PC2 (r=0.03).The PC1 was then used as an auxiliary variable for the prediction of soil CEC.Mean error (ME) and root mean square error (RMSE) of kriging for the test dataset were-1.76 and 3.67 cmolc kg-1,and ME and RMSE of cokriging for the test dataset were-1.47 and 2.95 cmolc kg-1,respectively.The cross-validation R2 for the prediction dataset was 0.24 for kriging and 0.39 for cokriging.The results show that cokriging with PC1 is more reliable than kriging for spatial interpolation.In addition,principal components have the highest potential for cokriging predictions when the principal components have good correlations with the primary variables.
基金funded by the National Natural Science Fund of China (NSFC)-Xinjiang No.U1503282the NSFC No.41030746,41672229 and 41172206
文摘Geophysical methods have been applied to a wide range of hydrogeological problems. With improvement in geophysical inversion algorithms and measurement tools, significant achievements have been made in the characterization of subsurface architecture, time-lapse monitoring of hydrogeological process and contaminant plumes delineation. In this paper, we summarize the geophysical methods that are most widely used in hydrogeology including Electrical Resistivity Tomography(ERT), Induced Polarization(IP), Ground Penetrating Radar(GPR) and Electromagnetic Induction(EMI). Three examples including lab and field works are used to demonstrate current application of geophysical methods for characterizing subsurface architecture and contaminant plumes. Though great progress has been made in hydrogeohysics over the last few decades at home and abroad, challenges still remain in practical applications. More recently, hydrogeophysics continues to develop in the areas of establishment of hydrogeophysical models, large-scale architecture characterization, uncertainty analysis, biogeochemical process monitoring and ecosystem science.