Based on the geochemical elements Rb and Sr in sediments with three different grain size fractions from profile H3 on the northern lacustrine bottomland 13 m above the Huangqihai Lake surface in 1986,the paper investi...Based on the geochemical elements Rb and Sr in sediments with three different grain size fractions from profile H3 on the northern lacustrine bottomland 13 m above the Huangqihai Lake surface in 1986,the paper investigates the record of palaeolake stand state, sedimentary environmental evolution,and winter monsoon change.First,these samples are separated into three different grain size fractions,i.e.,total sediments,77-20μm and〈20μm. Second,the chemical elements-Rb and Sr-of the grain size separation were tested and analyzed systematically in this paper.Then the elements compositions of these samples are measured using VP-320 mode fluorescence spectrum instrument,respectively.The magnetic susceptibility of these samples is measured using Kappabridge KLY-3 mode instrument made in Czech AGICO Company.The results showed the elements and the ratios varied regularly with the grain size.But the ratio of Rb/Sr in the sediments〈20μm correlates positively with the magnetic susceptibility of these samples.Therefore,the ratio of Rb/Sr in the fraction〈20 μm from the lake sediments reflected the strengthening of the weathering in the deposition sites.It is a good indicator of the summer monsoon-induced weathering and pedogenesis fluctuations and can be used to reconstruct the conditions of the paleoclimate and paleoenvironment.展开更多
We evaluated organic pollution in Bosten Lake, Xinjiang, China, by measuring the concentrations and distributions of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs). Water and sediment...We evaluated organic pollution in Bosten Lake, Xinjiang, China, by measuring the concentrations and distributions of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs). Water and sediment samples were collected from 19 sites 031-1319) in the lake for analysis. Our analytical results show that the concentrations of total OCPs in water ranges from 30.3 to 91.6 ng/L and the concentrations of PAHs ranges from undetectable (ND) to 368.7 ng/L. The concentrations of total OCPs in surface (i.e., lake bottom) sediment ranges from 6.9 to 16.7 ng/g and the concentrations of PAHs ranges from 25.2 to 491.0 ng/g. Hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) account for large proportions of the OCPs. Low α- to γ-HCH ratios in both water and sediment samples indicate possible contributions from both industrial products and lindane. DDTs in water are probably from historical input, whereas DDTs in sediments are from both historical and recent inputs. Moreover, DDT products in both water and sediments were from multiple sources in the northwestern part of the lake(B11, B12, B13, and B14). Fugacity ratios for DDT isomers (p,p'-DDE and p,p'-DDT) at these sites were generally higher than equilibrium values. These results suggest that the input from the Kaidu River and diffusion of DDTs from the sediment to the water are responsible for DDT pollution in the water. Lower-molecular-weight PAHs, which originate primarily from wood and coal combustion and petroleum sources, represent the major fraction of the PAHs in both water and sediment samples. Our findings indicate that OCPs and PAHs in Bosten Lake can be attributed primarily to human activities. A risk assessment of OCPs and PAHs in water and sediment from Bosten Lake, however, suggests that concentrations are not yet high enough to cause adverse biological effects on the aquatic ecosystem.展开更多
Understanding the temporal variations of extreme floods that occur in response to climate change is essential to anticipate the trends in flood magnitude and frequency in the context of global warming. However, long-t...Understanding the temporal variations of extreme floods that occur in response to climate change is essential to anticipate the trends in flood magnitude and frequency in the context of global warming. However, long-term records of paleofloods in arid regions are scarce, thus preventing a thorough understanding of such events. In this study, a reconstruction of paleofloods over the past 300 years was conducted through an analysis of grain sizes from the sediments of Kanas Lake in the Altay Mountains of northwestern China. Results showed that grain parameters and frequency distributions can be used to infer possible abrupt environmental events within the lake sedimentary sequence, and two extreme flood events corresponding to ca. 1736–1765 AD and ca. 1890 AD were further identified based on canonical discriminant analysis(CDA) and coarse percentile versus median grain size(C-M) pattern analysis, both of which occurred during warmer and wetter climate conditions by referring to tree-ring records. These two flood events are also evidenced by lake sedimentary records in the Altay and Tianshan mountains. Furthermore, through a comparison with other records, the flood event from ca. 1736–1765 AD in the study region seems to have occurred in both the arid central Asia and the Alps in Europe, and thus may have been associated with changes in the North Atlantic Oscillation(NAO) index.展开更多
Based on 11004 satellite images from CBERS CCD and Landsat TM/ETM,changes in the spatial characteristics of all lakes in China were determined following pre-established interpretation rules.This dataset was supported ...Based on 11004 satellite images from CBERS CCD and Landsat TM/ETM,changes in the spatial characteristics of all lakes in China were determined following pre-established interpretation rules.This dataset was supported by 6843 digital raster images(1:100000 and 1:50000),a countrywide digital vector dataset(1:250000),and historical literature.Comparative data were corrected for seasonal variations using precipitation data.There are presently 2693 natural lakes in China with an area greater than 1.0 km2,excluding reservoirs.These lakes are distributed in 28 provinces,autonomous regions and municipalities and have a total area of 81414.6 km2,accounting for-0.9% of China's total land area.In the past 30 years,the number of newly formed and newly discovered lakes with an area greater than 1.0 km2 is 60 and 131,respectively.Conversely,243 lakes have disappeared in this time period.展开更多
Central Asia(CA)is one of the most fragile regions worldwide owing to arid climate and accumulated human activities,and is a global hotspot due to gradually deteriorating ecological environment.The Amu Darya Basin(ADB...Central Asia(CA)is one of the most fragile regions worldwide owing to arid climate and accumulated human activities,and is a global hotspot due to gradually deteriorating ecological environment.The Amu Darya Basin(ADB),as the most economically and demographically important region in CA,is of particular concern.To determine the concentration,source and pollution status of heavy metals(HMs)in surface sediments of the ADB,154samples were collected and analyzed for metals across the basin.Correlation and cluster analysis,and positive matrix factorization model were implemented to understand metals’association and apportion their possible sources.Cumulative frequency distribution and normalization methods were used to determine the geochemical baseline values(GBVs).Then,various pollution indices and ecological risk index were employed to characterize and evaluate the pollution levels and associated risks based on the GBVs.Results indicated that the mean concentrations of HMs showed the following descending order in the surface sediments of ADB:Zn>Cr>Ni>Cu>Pb>Co>Cd.The spatial distribution maps showed that Cr,Ni,and Cu had relatively high enrichment in the irrigated agricultural area;high abundances of Zn,Pb,and Cd were mainly found in the urban areas.Four source factors were identified for these metals,namely natural sources,industrial discharge,agricultural activities,and mixed source of traffic and mining activities,accounting for 33.5%,11.4%,34.2%,and 20.9%of the total contribution,respectively.The GBVs of Cd,Zn,Pb,Cu,Ni,Cr,and Co in the ADB were 0.27,58.9,14.6,20.3,25.8,53.4,and 9.80 mg/kg,respectively,which were similar to the regional background values obtained from lake sediments in the bottom.In general,the assessment results revealed that surface sediments of the ADB were moderately polluted and low ecological risk by HMs.展开更多
基金National Natural Science Foundation of China, No.40401006
文摘Based on the geochemical elements Rb and Sr in sediments with three different grain size fractions from profile H3 on the northern lacustrine bottomland 13 m above the Huangqihai Lake surface in 1986,the paper investigates the record of palaeolake stand state, sedimentary environmental evolution,and winter monsoon change.First,these samples are separated into three different grain size fractions,i.e.,total sediments,77-20μm and〈20μm. Second,the chemical elements-Rb and Sr-of the grain size separation were tested and analyzed systematically in this paper.Then the elements compositions of these samples are measured using VP-320 mode fluorescence spectrum instrument,respectively.The magnetic susceptibility of these samples is measured using Kappabridge KLY-3 mode instrument made in Czech AGICO Company.The results showed the elements and the ratios varied regularly with the grain size.But the ratio of Rb/Sr in the sediments〈20μm correlates positively with the magnetic susceptibility of these samples.Therefore,the ratio of Rb/Sr in the fraction〈20 μm from the lake sediments reflected the strengthening of the weathering in the deposition sites.It is a good indicator of the summer monsoon-induced weathering and pedogenesis fluctuations and can be used to reconstruct the conditions of the paleoclimate and paleoenvironment.
基金funded by the National Natural Science Foundation of China(4147117341671200+1 种基金U1603242)the Specific Scientific Research Fund from the Ministry of Environmental Protection of the People’s Republic of China(201309041)
文摘We evaluated organic pollution in Bosten Lake, Xinjiang, China, by measuring the concentrations and distributions of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs). Water and sediment samples were collected from 19 sites 031-1319) in the lake for analysis. Our analytical results show that the concentrations of total OCPs in water ranges from 30.3 to 91.6 ng/L and the concentrations of PAHs ranges from undetectable (ND) to 368.7 ng/L. The concentrations of total OCPs in surface (i.e., lake bottom) sediment ranges from 6.9 to 16.7 ng/g and the concentrations of PAHs ranges from 25.2 to 491.0 ng/g. Hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) account for large proportions of the OCPs. Low α- to γ-HCH ratios in both water and sediment samples indicate possible contributions from both industrial products and lindane. DDTs in water are probably from historical input, whereas DDTs in sediments are from both historical and recent inputs. Moreover, DDT products in both water and sediments were from multiple sources in the northwestern part of the lake(B11, B12, B13, and B14). Fugacity ratios for DDT isomers (p,p'-DDE and p,p'-DDT) at these sites were generally higher than equilibrium values. These results suggest that the input from the Kaidu River and diffusion of DDTs from the sediment to the water are responsible for DDT pollution in the water. Lower-molecular-weight PAHs, which originate primarily from wood and coal combustion and petroleum sources, represent the major fraction of the PAHs in both water and sediment samples. Our findings indicate that OCPs and PAHs in Bosten Lake can be attributed primarily to human activities. A risk assessment of OCPs and PAHs in water and sediment from Bosten Lake, however, suggests that concentrations are not yet high enough to cause adverse biological effects on the aquatic ecosystem.
基金Under the auspices of National Key Research and Development Program of China(No.2017YFA0603400)National Science Foundation of China(No.41671200,U1603242)
文摘Understanding the temporal variations of extreme floods that occur in response to climate change is essential to anticipate the trends in flood magnitude and frequency in the context of global warming. However, long-term records of paleofloods in arid regions are scarce, thus preventing a thorough understanding of such events. In this study, a reconstruction of paleofloods over the past 300 years was conducted through an analysis of grain sizes from the sediments of Kanas Lake in the Altay Mountains of northwestern China. Results showed that grain parameters and frequency distributions can be used to infer possible abrupt environmental events within the lake sedimentary sequence, and two extreme flood events corresponding to ca. 1736–1765 AD and ca. 1890 AD were further identified based on canonical discriminant analysis(CDA) and coarse percentile versus median grain size(C-M) pattern analysis, both of which occurred during warmer and wetter climate conditions by referring to tree-ring records. These two flood events are also evidenced by lake sedimentary records in the Altay and Tianshan mountains. Furthermore, through a comparison with other records, the flood event from ca. 1736–1765 AD in the study region seems to have occurred in both the arid central Asia and the Alps in Europe, and thus may have been associated with changes in the North Atlantic Oscillation(NAO) index.
基金supported by the National Special Basic Research Project (Gran No. 2006FY110600)
文摘Based on 11004 satellite images from CBERS CCD and Landsat TM/ETM,changes in the spatial characteristics of all lakes in China were determined following pre-established interpretation rules.This dataset was supported by 6843 digital raster images(1:100000 and 1:50000),a countrywide digital vector dataset(1:250000),and historical literature.Comparative data were corrected for seasonal variations using precipitation data.There are presently 2693 natural lakes in China with an area greater than 1.0 km2,excluding reservoirs.These lakes are distributed in 28 provinces,autonomous regions and municipalities and have a total area of 81414.6 km2,accounting for-0.9% of China's total land area.In the past 30 years,the number of newly formed and newly discovered lakes with an area greater than 1.0 km2 is 60 and 131,respectively.Conversely,243 lakes have disappeared in this time period.
基金Strategic Priority Research Program of Chinese Academy of Sciences,Pan-Third Pole Environment Study for a Green Silk Road,No.XDA2006030101National Natural Science Foundation of China,No.U2003202。
文摘Central Asia(CA)is one of the most fragile regions worldwide owing to arid climate and accumulated human activities,and is a global hotspot due to gradually deteriorating ecological environment.The Amu Darya Basin(ADB),as the most economically and demographically important region in CA,is of particular concern.To determine the concentration,source and pollution status of heavy metals(HMs)in surface sediments of the ADB,154samples were collected and analyzed for metals across the basin.Correlation and cluster analysis,and positive matrix factorization model were implemented to understand metals’association and apportion their possible sources.Cumulative frequency distribution and normalization methods were used to determine the geochemical baseline values(GBVs).Then,various pollution indices and ecological risk index were employed to characterize and evaluate the pollution levels and associated risks based on the GBVs.Results indicated that the mean concentrations of HMs showed the following descending order in the surface sediments of ADB:Zn>Cr>Ni>Cu>Pb>Co>Cd.The spatial distribution maps showed that Cr,Ni,and Cu had relatively high enrichment in the irrigated agricultural area;high abundances of Zn,Pb,and Cd were mainly found in the urban areas.Four source factors were identified for these metals,namely natural sources,industrial discharge,agricultural activities,and mixed source of traffic and mining activities,accounting for 33.5%,11.4%,34.2%,and 20.9%of the total contribution,respectively.The GBVs of Cd,Zn,Pb,Cu,Ni,Cr,and Co in the ADB were 0.27,58.9,14.6,20.3,25.8,53.4,and 9.80 mg/kg,respectively,which were similar to the regional background values obtained from lake sediments in the bottom.In general,the assessment results revealed that surface sediments of the ADB were moderately polluted and low ecological risk by HMs.