期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Artificial Neural Network-based prediction of glacial debris flows in the ParlungZangbo Basin, southeastern Tibetan Plateau,China 被引量:1
1
作者 TANG Wang DING Hai-tao +4 位作者 CHEN Ning-sheng MA Shang-Chang LIU Li-hong wu kang-lin TIAN Shu-feng 《Journal of Mountain Science》 SCIE CSCD 2021年第1期51-67,共17页
Accurate prediction on geological hazards can prevent disaster events in advance and greatly reduce property losses and life casualties.Glacial debris flows are the most serious hazards in southeastern Tibet in China ... Accurate prediction on geological hazards can prevent disaster events in advance and greatly reduce property losses and life casualties.Glacial debris flows are the most serious hazards in southeastern Tibet in China due to their complexity in formation mechanism and the difficulty in prediction.Data collected from 102 glacier debris flow events from 31 gullies since 1970 and regional meteorological data from 1970 to 2019 in ParlungZangbo River Basin in southeastern Tibet were used for Artificial Neural Network(ANN)-based prediction of glacial debris flows.The formation mechanism of glacial debris flows in the ParlungZangbo Basin was systematically analyzed,and the calculations involving the meteorological data and disaster events were conducted by using the statistical methods and two layers fully connected neural networks.The occurrence probabilities and scales of glacial debris flows(small,medium,and large)were predicted,and promising results have been achieved.Through the proposed model calculations,a prediction accuracy of 78.33%was achieved for the scale of glacial debris flows in the study area.The prediction accuracy for both large-and medium-scale debris flows are higher than that for small-scale debris flows.The debris flow scale and the probability of occurrence increase with increasing rainfall and temperature.In addition,the K-fold cross-validation method was used to verify the reliability of the model.The average accuracy of the model calculated under this method is about 93.3%,which validates the proposed model.Practices have proved that the combination of ANN and disaster events can provide sound prediction on geological hazards under complex conditions. 展开更多
关键词 Two layers neural networks Glacial debris flow Disaster events K-fold cross-validation RAINFALL Temperature
下载PDF
血浆置换治疗慢加急性肝衰竭患者的效果
2
作者 呼怡菲 李泽宇 +4 位作者 吴康林 任东美 闫晓晖 杨璐琼 王红 《河南医学研究》 CAS 2020年第21期3845-3849,共5页
目的观察血浆置换(PE)治疗慢加急性肝衰竭(ACLF)患者的临床效果。方法回顾性分析2015年7月至2019年6月郑州大学第一附属医院收治的208例ACLF患者的临床资料。对照组(114例)接受内科综合治疗,PE组(94例)在内科治疗基础上联合PE治疗,随访9... 目的观察血浆置换(PE)治疗慢加急性肝衰竭(ACLF)患者的临床效果。方法回顾性分析2015年7月至2019年6月郑州大学第一附属医院收治的208例ACLF患者的临床资料。对照组(114例)接受内科综合治疗,PE组(94例)在内科治疗基础上联合PE治疗,随访90 d。对比两组患者入院时和出院前的实验室指标、终末期肝病模型(MELD)评分、90 d平均死亡时间及28 d和90 d死亡率。结果两组治疗前后血清Na^+、丙氨酸氨基转移酶(ALT)、白蛋白(ALB)、凝血酶原时间(PTA)、总胆红素(T-Bil)、红细胞比容(HCT)、血小板计数(PLT)比较,差异有统计学意义(P<0.05)。PE组治疗后MELD评分低于治疗前,差异有统计学意义(P<0.05)。两组28 d死亡率和90 d死亡率比较,差异无统计学意义(P>0.05)。PE组90 d平均死亡时间为18.6 d,对照组为15.9 d,差异无统计学意义(P>0.05)。结论PE治疗ACLF患者可有效降低T-Bil水平,改善凝血功能,降低MELD评分,但对预后无明显影响。 展开更多
关键词 慢加急性肝衰竭 血浆置换 疗效
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部