The effects of alkaline cations (M^+ = Li^+, Na^+, K^+, Cs^+)on the electrochemical synthesis of polyaniline were carfled out under cyclovoltammetric conditions using nitrates of Li^+, Na^+, K^+, and Cs^+ a...The effects of alkaline cations (M^+ = Li^+, Na^+, K^+, Cs^+)on the electrochemical synthesis of polyaniline were carfled out under cyclovoltammetric conditions using nitrates of Li^+, Na^+, K^+, and Cs^+ as the supporting electrolytes. The results show that the oxidation potentials of aniline in the electrolytes decrease as the protonation extent of aniline decreases from the fast scan, which is caused by the decrease of the ionic radius of alkaline metal ions at the same concentration of alkaline cations. With the scan number increasing, the deposit charge Q as the characteristic growth function also depends on the protonation of aniline, and it increases with the ionic radius of alkaline cations increasing. SEM images show the effect of alkaline cations on the morphology of polyaniline. It is clear that the ionic mobility of alkaline cations is further lower than that of W. Alkaline cations and counter-ions were the species responsible for the enhancement of Pani electrosynthesis. Therefore, this is exactly what SEM images show: a relatively rough fibrous structure in the case of Pani-H^+ suggesting a sponge-like structure and a highly orderly fiber-like structure in the case of Pani-M^+.展开更多
This paper describes syntheses and structure determination of four lanthanide complexes [Nd(2-Cl-4-FBA) 3 phen] 2 (1, 2-Cl-4-FBA = 2-chloro-4-fluorobenzoate, phen = 1,10-phenanthroline), [Ln(2,5-DClBA) 3 phen] 2 (Ln =...This paper describes syntheses and structure determination of four lanthanide complexes [Nd(2-Cl-4-FBA) 3 phen] 2 (1, 2-Cl-4-FBA = 2-chloro-4-fluorobenzoate, phen = 1,10-phenanthroline), [Ln(2,5-DClBA) 3 phen] 2 (Ln = Sm(2) and Tb(3), 2,5-DClBA = 2,5-dichlorobenzoate) and [Sm(2-Cl-4,5-DFBA) 3 (phen)(H 2 O)] 2 (4, (2-Cl-4,5-DFBA = 2-chloro-4,5-difluorobenzo- ate). The complexes were characterized by elemental analysis, infrared and ultraviolet spectra, and X-ray single-crystal diffraction. In the molecular structures of 1 4, two Ln 3+ ions are linked by four carboxyl groups, with two of them in a bridging bidentate mode and the other two in a bridging-chelating tridentate mode, forming four binuclear molecules. In addition, each Ln 3+ ion is also chelated to one phen molecule and one carboxyl group in the complexes, except each Sm 3+ ion in 4 which is bonded to one carboxyl group by unidentate mode and one H 2 O molecule. There are two different coordination polyhedrons for each Nd 3+ ion in the two similar molecular structures of 1 and they are a distorted monocapped square antiprismatic and a distorted tricapped triangular prism conformation, respectively. The coordination polyhedron for each Ln 3+ ion in 2 4 is a nine-coordinated distorted mono-capped square antiprismatic conformation. The complex 3 exhibits green luminescence under the radiation of UV light. The thermal decomposition behaviors of the complexes have been discussed by simultaneous TG/DSC-FTIR technique. The 3D surface graphs for the FTIR spectra of the evolved gases were recorded and the gaseous products were identified by the typical IR spectra obtained at different temperatures from the 3D surface graphs. Meanwhile, we discussed the nonisothermal kinetics of 1 4 by the integral isoconversional non-linear (NL-INT) method.展开更多
A series of lanthanide complexes with the 3,4,5-trimethoxybenzoic acid (3,4,5-tmoba) and 1,10-phenanthroline(phen), [Ln(3,4,5-tmoba)3phen]2(Ln = Pr(l), Nd (2) and Ho(3)), have been synthesized and charac...A series of lanthanide complexes with the 3,4,5-trimethoxybenzoic acid (3,4,5-tmoba) and 1,10-phenanthroline(phen), [Ln(3,4,5-tmoba)3phen]2(Ln = Pr(l), Nd (2) and Ho(3)), have been synthesized and characterized by a series of techniques including elemental analysis, IR spectra, X-ray crystallography and TG/DSC-FTIR technology. The three complexes have two kinds of coordination modes, in which the Pr3+ and Nd3+ cations are nine-coordinated and the Ho3+ cation is eight-coordinated. The three-dimensional IR accumulation spectra of gaseous products for complexes 1-3 were analyzed and the gaseous products were identified by the typical IR spectra obtained from the 3D surface graphs. Meanwhile, we obtained the activation energy E of the first steps of complexes 1-3 by the integral isoconversional non-linear (NL-INT) method and discussed the non-isothermal kinetics of complexes 1-3 using the Malek method. Finally, SB(m, n) was defined as the kinetic method of the first-step thermal decomposition. The thermodynamic parameters △G≠, △H≠ and △S≠ of activation at the peak temperature were also calculated.展开更多
基金This project was financially supported by the National Natural Science Foundation of China (No. 50274010)the National High-Tech Research and Development Program of China ("863" Program, No. 2002AA-302404).
文摘The effects of alkaline cations (M^+ = Li^+, Na^+, K^+, Cs^+)on the electrochemical synthesis of polyaniline were carfled out under cyclovoltammetric conditions using nitrates of Li^+, Na^+, K^+, and Cs^+ as the supporting electrolytes. The results show that the oxidation potentials of aniline in the electrolytes decrease as the protonation extent of aniline decreases from the fast scan, which is caused by the decrease of the ionic radius of alkaline metal ions at the same concentration of alkaline cations. With the scan number increasing, the deposit charge Q as the characteristic growth function also depends on the protonation of aniline, and it increases with the ionic radius of alkaline cations increasing. SEM images show the effect of alkaline cations on the morphology of polyaniline. It is clear that the ionic mobility of alkaline cations is further lower than that of W. Alkaline cations and counter-ions were the species responsible for the enhancement of Pani electrosynthesis. Therefore, this is exactly what SEM images show: a relatively rough fibrous structure in the case of Pani-H^+ suggesting a sponge-like structure and a highly orderly fiber-like structure in the case of Pani-M^+.
基金the National Natural Science Foundation of China (21073053,21073052 and 20773034)the Natural Science Foundation of Hebei Province (B2012205022)
文摘This paper describes syntheses and structure determination of four lanthanide complexes [Nd(2-Cl-4-FBA) 3 phen] 2 (1, 2-Cl-4-FBA = 2-chloro-4-fluorobenzoate, phen = 1,10-phenanthroline), [Ln(2,5-DClBA) 3 phen] 2 (Ln = Sm(2) and Tb(3), 2,5-DClBA = 2,5-dichlorobenzoate) and [Sm(2-Cl-4,5-DFBA) 3 (phen)(H 2 O)] 2 (4, (2-Cl-4,5-DFBA = 2-chloro-4,5-difluorobenzo- ate). The complexes were characterized by elemental analysis, infrared and ultraviolet spectra, and X-ray single-crystal diffraction. In the molecular structures of 1 4, two Ln 3+ ions are linked by four carboxyl groups, with two of them in a bridging bidentate mode and the other two in a bridging-chelating tridentate mode, forming four binuclear molecules. In addition, each Ln 3+ ion is also chelated to one phen molecule and one carboxyl group in the complexes, except each Sm 3+ ion in 4 which is bonded to one carboxyl group by unidentate mode and one H 2 O molecule. There are two different coordination polyhedrons for each Nd 3+ ion in the two similar molecular structures of 1 and they are a distorted monocapped square antiprismatic and a distorted tricapped triangular prism conformation, respectively. The coordination polyhedron for each Ln 3+ ion in 2 4 is a nine-coordinated distorted mono-capped square antiprismatic conformation. The complex 3 exhibits green luminescence under the radiation of UV light. The thermal decomposition behaviors of the complexes have been discussed by simultaneous TG/DSC-FTIR technique. The 3D surface graphs for the FTIR spectra of the evolved gases were recorded and the gaseous products were identified by the typical IR spectra obtained at different temperatures from the 3D surface graphs. Meanwhile, we discussed the nonisothermal kinetics of 1 4 by the integral isoconversional non-linear (NL-INT) method.
基金the National Natural Science Foundation of China (21073053,21073052,20773034)the Natural Science Foundation of Hebei Province (B2012205022)
文摘A series of lanthanide complexes with the 3,4,5-trimethoxybenzoic acid (3,4,5-tmoba) and 1,10-phenanthroline(phen), [Ln(3,4,5-tmoba)3phen]2(Ln = Pr(l), Nd (2) and Ho(3)), have been synthesized and characterized by a series of techniques including elemental analysis, IR spectra, X-ray crystallography and TG/DSC-FTIR technology. The three complexes have two kinds of coordination modes, in which the Pr3+ and Nd3+ cations are nine-coordinated and the Ho3+ cation is eight-coordinated. The three-dimensional IR accumulation spectra of gaseous products for complexes 1-3 were analyzed and the gaseous products were identified by the typical IR spectra obtained from the 3D surface graphs. Meanwhile, we obtained the activation energy E of the first steps of complexes 1-3 by the integral isoconversional non-linear (NL-INT) method and discussed the non-isothermal kinetics of complexes 1-3 using the Malek method. Finally, SB(m, n) was defined as the kinetic method of the first-step thermal decomposition. The thermodynamic parameters △G≠, △H≠ and △S≠ of activation at the peak temperature were also calculated.