为了解决局部阴影下传统最大功率点追踪(maximum power point tracking, MPPT)算法容易陷入局部最优从而降低光伏系统发电效率的问题,本研究提出融合正弦余弦算法和自适应策略的布谷鸟优化算法(cuckoo search algorithm fusing sine cos...为了解决局部阴影下传统最大功率点追踪(maximum power point tracking, MPPT)算法容易陷入局部最优从而降低光伏系统发电效率的问题,本研究提出融合正弦余弦算法和自适应策略的布谷鸟优化算法(cuckoo search algorithm fusing sine cosine algorithm and adaptive strategy, AFCS),并应用于光伏全局MPPT控制中,以改善其收敛速度与追踪精度.设置多种光照情况,并与扰动观察法、花朵授粉算法和粒子群算法进行对比.经过Matlab/Simulink仿真验证,表明本算法拥有较快的收敛速度和较高的追踪精度,在各个光照条件下均能快速追踪到光伏阵列最大功率点,可以有效提高光伏系统的发电效率.展开更多
文摘为了解决局部阴影下传统最大功率点追踪(maximum power point tracking, MPPT)算法容易陷入局部最优从而降低光伏系统发电效率的问题,本研究提出融合正弦余弦算法和自适应策略的布谷鸟优化算法(cuckoo search algorithm fusing sine cosine algorithm and adaptive strategy, AFCS),并应用于光伏全局MPPT控制中,以改善其收敛速度与追踪精度.设置多种光照情况,并与扰动观察法、花朵授粉算法和粒子群算法进行对比.经过Matlab/Simulink仿真验证,表明本算法拥有较快的收敛速度和较高的追踪精度,在各个光照条件下均能快速追踪到光伏阵列最大功率点,可以有效提高光伏系统的发电效率.