Al foam sandwich panel(AFS) with metallic bonding was fabricated by foaming a hotpressed three-layer composite with two steel facesheets and a melt route precursor as core. The melt route precursor was fabricated by d...Al foam sandwich panel(AFS) with metallic bonding was fabricated by foaming a hotpressed three-layer composite with two steel facesheets and a melt route precursor as core. The melt route precursor was fabricated by dispersing undecomposed blowing agent into molten Al, followed by solidification. Microstructures of the joints during fabrication process were analyzed by scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). Static three-point bending was conducted to evaluate joint quality of the AFS. It was found that a primary bonding was achieved by hot-pressing and significant diffusion layer of Fe-Al intermetallic compounds was sustained between steel and Al foam core by foaming. Damage modes of the AFS under three-point bending were dominated by indentation, plastic hinges, core shear and crack. Delamination between steel and foam was absent, implying that reliable metallic bonding was achieved. This method allows for producing large-scale AFS with steel facesheets.展开更多
基金Funded by the National Natural Science Foundation of China(51174060 and 51301109)the Science and Technology Department of Liaoning Province of China(2013223004)the Fundamental Research Funds for the Central Universities(140203004)
文摘Al foam sandwich panel(AFS) with metallic bonding was fabricated by foaming a hotpressed three-layer composite with two steel facesheets and a melt route precursor as core. The melt route precursor was fabricated by dispersing undecomposed blowing agent into molten Al, followed by solidification. Microstructures of the joints during fabrication process were analyzed by scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). Static three-point bending was conducted to evaluate joint quality of the AFS. It was found that a primary bonding was achieved by hot-pressing and significant diffusion layer of Fe-Al intermetallic compounds was sustained between steel and Al foam core by foaming. Damage modes of the AFS under three-point bending were dominated by indentation, plastic hinges, core shear and crack. Delamination between steel and foam was absent, implying that reliable metallic bonding was achieved. This method allows for producing large-scale AFS with steel facesheets.