期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
CuO nanoflowers/copper fiber felt integrated porous electrode for lithium-ion batteries 被引量:3
1
作者 YUAN Wei YE YinTong +9 位作者 YANG Yang ZHANG XiaoQing PAN BaoYou PENG ZiMing wu mulun QIU ZhiQiang WANG Chun YUAN YuHang YAN ZhiGuo TANG Yong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第11期2423-2434,共12页
The structure of current collectors has significant effects on the performance of a lithium-ion battery(LIB).In this study,we use copper fiber felts made by multi-tooth cutting and high-temperature solid-phase sinteri... The structure of current collectors has significant effects on the performance of a lithium-ion battery(LIB).In this study,we use copper fiber felts made by multi-tooth cutting and high-temperature solid-phase sintering as the current collector for LIBs.An integrated porous electrode based on CuO nanoflowers/copper fiber felt is developed for the anode.Results suggest that the reversible capacity and cycle stability of this new anode are significantly improved,compared with the pristine bare-surface copper plate under the same condition of rate cycles.The new anode structure based on the copper-fiber felt with a porosity of 60%exhibits a higher performance with an initial specific capacity of 609.5 mAh g^(-1)and retains 486.1 mAh g^(-1)after 200 cycles at a current density of 0.5 C.The improved electrochemical performance of this electrode is attributed to its large surface area of CuO nanoflowers and porous structure of the copper fiber felt,due to enhanced contact between the active material of CuO nanoflowers and electrolyte.This pore-rich structure makes the electrolyte easy to permeate into the electrode,shortens the diffusion path of Li^(+),reduces the internal resistance and alleviates the volume expansion of the active material during the insertion and desertion processes of Li^(+). 展开更多
关键词 lithium-ion battery integrated electrode copper fiber felt CuO nanoflowers multi-tooth cutting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部