Until now, although comprehensive management strategies have improved treatment, there are no treatments to alleviate symptoms and slow disease progression[1]. In the past few decades, there has been increasing eviden...Until now, although comprehensive management strategies have improved treatment, there are no treatments to alleviate symptoms and slow disease progression[1]. In the past few decades, there has been increasing evidence that inflammation plays a very important role in silicosis. Injury-induced inflammation is an effective strategy to remove harmful stimuli and initiate a healing process. However, it might be harmful to the organism and result in a permanent disease state if the inflammation is prolonged[2].展开更多
Polycystic ovary syndrome(PCOS) is a common metabolic and hormonal disorder afflicting approximately 5%–20% of all women of reproductive age~([1]). PCOS is characterized with hyperandrogenism,oligo-anovulation, and a...Polycystic ovary syndrome(PCOS) is a common metabolic and hormonal disorder afflicting approximately 5%–20% of all women of reproductive age~([1]). PCOS is characterized with hyperandrogenism,oligo-anovulation, and a polycystic ovarian morphology. The syndrome features heterogeneous manifestations, such as hirsutism, menstrual dysfunction, and obesity. Women with PCOS are at higher risk of developing multiple metabolic comorbidities and subsequent cardiovascular complications even beyond childbearing age.展开更多
The dynamics of air entrainment and suppression schemes in a pump sump are investigated. Four different turbulence models(standard k-ε model, realizable k-ε model, renormalization group(RNG) k-ε model and shear-str...The dynamics of air entrainment and suppression schemes in a pump sump are investigated. Four different turbulence models(standard k-ε model, realizable k-ε model, renormalization group(RNG) k-ε model and shear-stress transport(SST) k-ω model) and the volume of fluid(VOF) multiphase model are employed to simulate the three-dimensional unsteady turbulent flow in a pump sump. The dynamic processes of air entrainment are simulated under conditions of relatively high discharge and low submergence; the mechanism of air entrainment is discussed in detail. Then suppression means for air entrainment is adopted by placing a circular plate on the intake pipe at three different heights. The results show: the position and structure of the free-surface vortices, sidewall-attached vortices, back wall-attached vortices, and floor-attached vortices calculated by SST k-ω turbulence model agree well with the experimental data. The two main contributors for air entrainment are pressure difference and vortex strength. By placing a circular plate in the middle of the intake pipe under water, air entrainment is suppressed because vortex strength is reduced.展开更多
文摘Until now, although comprehensive management strategies have improved treatment, there are no treatments to alleviate symptoms and slow disease progression[1]. In the past few decades, there has been increasing evidence that inflammation plays a very important role in silicosis. Injury-induced inflammation is an effective strategy to remove harmful stimuli and initiate a healing process. However, it might be harmful to the organism and result in a permanent disease state if the inflammation is prolonged[2].
基金supported by the Public Communication of Science and Technology Program [2020A1414050018] by the Department of Science and Technology of Guangdong Province。
文摘Polycystic ovary syndrome(PCOS) is a common metabolic and hormonal disorder afflicting approximately 5%–20% of all women of reproductive age~([1]). PCOS is characterized with hyperandrogenism,oligo-anovulation, and a polycystic ovarian morphology. The syndrome features heterogeneous manifestations, such as hirsutism, menstrual dysfunction, and obesity. Women with PCOS are at higher risk of developing multiple metabolic comorbidities and subsequent cardiovascular complications even beyond childbearing age.
基金supported by the National Natural Science Foundation of China(Grant No.51422906)
文摘The dynamics of air entrainment and suppression schemes in a pump sump are investigated. Four different turbulence models(standard k-ε model, realizable k-ε model, renormalization group(RNG) k-ε model and shear-stress transport(SST) k-ω model) and the volume of fluid(VOF) multiphase model are employed to simulate the three-dimensional unsteady turbulent flow in a pump sump. The dynamic processes of air entrainment are simulated under conditions of relatively high discharge and low submergence; the mechanism of air entrainment is discussed in detail. Then suppression means for air entrainment is adopted by placing a circular plate on the intake pipe at three different heights. The results show: the position and structure of the free-surface vortices, sidewall-attached vortices, back wall-attached vortices, and floor-attached vortices calculated by SST k-ω turbulence model agree well with the experimental data. The two main contributors for air entrainment are pressure difference and vortex strength. By placing a circular plate in the middle of the intake pipe under water, air entrainment is suppressed because vortex strength is reduced.