Experimental studies on the compressive behavior of composite laminates after low velocity impact was carried out with two test methods.One is SACMA Standard,and the other is a small dimensional specimen test method.I...Experimental studies on the compressive behavior of composite laminates after low velocity impact was carried out with two test methods.One is SACMA Standard,and the other is a small dimensional specimen test method.Impact damage distributions,compressive failure process after impact,quasi static indentation and compression of laminates with a hole were brought into comparison between these two test methods.The results showed that there is a great difference between these two test methods.Compressive behavior of laminates after impact varies with different test methods.Residual compressive strength of laminates after low velocity impact measured with SACMA Standard can reflect stiffness properties of composite resins more wholely than that measured with the other method can do.Small dimensional specimen test method should be improved on as an experimental standard of compressive strength after impact.展开更多
Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- ...Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- and edge-crack tension specimens. It is found that the crack opening stress is affected by the crack tip element. By taking the crack tip element into account, a modified crack opening stress equation is given for the center-crack tension specimen. Crack surface displace- ment equations for an edge crack in a semi-infinite plate under remote uniform tension and partially distributed pressure are derived by using the weight function method. Based on these displacements, a crack opening stress equation for an edge crack in a semi-infinite plate under uniform tension has been developed. The study shows that the crack opening stress is geometry-dependent, and the weight function method provides an effective and reliable tool to deal with such geometry depen- dence.展开更多
文摘Experimental studies on the compressive behavior of composite laminates after low velocity impact was carried out with two test methods.One is SACMA Standard,and the other is a small dimensional specimen test method.Impact damage distributions,compressive failure process after impact,quasi static indentation and compression of laminates with a hole were brought into comparison between these two test methods.The results showed that there is a great difference between these two test methods.Compressive behavior of laminates after impact varies with different test methods.Residual compressive strength of laminates after low velocity impact measured with SACMA Standard can reflect stiffness properties of composite resins more wholely than that measured with the other method can do.Small dimensional specimen test method should be improved on as an experimental standard of compressive strength after impact.
文摘Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- and edge-crack tension specimens. It is found that the crack opening stress is affected by the crack tip element. By taking the crack tip element into account, a modified crack opening stress equation is given for the center-crack tension specimen. Crack surface displace- ment equations for an edge crack in a semi-infinite plate under remote uniform tension and partially distributed pressure are derived by using the weight function method. Based on these displacements, a crack opening stress equation for an edge crack in a semi-infinite plate under uniform tension has been developed. The study shows that the crack opening stress is geometry-dependent, and the weight function method provides an effective and reliable tool to deal with such geometry depen- dence.