The mechanical balance process is the key process to eliminate the quadrature error and improve the performance of the cupped wave gyro. The conventional mechanical balance method for cupped wave gyro based on cup-wal...The mechanical balance process is the key process to eliminate the quadrature error and improve the performance of the cupped wave gyro. The conventional mechanical balance method for cupped wave gyro based on cup-wall trimming requires high control accuracy of trimming quantity, which increases the production cost and decreases the fabrication efficiency in large extent. However, it is hard to reach the high balance accuracy with the natural frequency split of mHz grade by using the conventional method. In this paper, the lumped mass dynamic model of the cupped wave gyro is built by discretization method, and the effects of different position trimming on the natural frequency are analyzed. It is pointed out that trimming off a tiny quantity of material from cup-wall causes large variation of the natural frequency is the main reason for the low accuracy of the conventional mechanical balance method. Then, a precision balance method for cupped wave gyro based on cup-bottom trimming is presented and the entire procedures of this method are given. The static balance process and dynamic balance process of the precision balance method are simulated by the finite element software. The simulation result shows that the precision balance method based on cup-bottom trimming brings less additional natural frequency split in the static balance process, minimizes the natural frequency split to mHz grade and rectify the angle of mode offset to 0.1° grade in the dynamic balance process, furthermore, the method decreases the requirement for control accuracy of trimming quantity evidently. The research work provides references for structure optimization design and balance process plan of the cupped wave gyro.展开更多
Mechanical Quality factor(Q factor) of the resonator is an important parameter for the cylinder vibratory gyroscope(CVG). Traditional analytical methods mainly focus on a partial energy loss during the vibration p...Mechanical Quality factor(Q factor) of the resonator is an important parameter for the cylinder vibratory gyroscope(CVG). Traditional analytical methods mainly focus on a partial energy loss during the vibration process of the CVG resonator, thus are not accurate for the mechanical Q factor prediction. Therefore an integrated model including air damping loss, surface defect loss, support loss, thermoelastic damping loss and internal friction loss is proposed to obtain the mechanical Q factor of the CVG resonator. Based on structural dynamics and energy dissipation analysis, the contribution of each energy loss to the total mechanical Q factor is quantificationally analyzed. For the resonator with radius ranging from 10 mm to 20 mm, its mechanical Q factor is mainly related to the support loss, thermoelastic damping loss and internal friction loss, which are fundamentally determined by the geometric sizes and material properties of the resonator. In addition, resonators made of alloy 3J53 (Ni42CrTiA1), with different sizes, were experimentally fabricated to test the mechanical Q factor. The theoretical model is well verified by the experimental data, thus provides an effective theoretical method to design and predict the mechanical Q factor of the CVG resonator.展开更多
The existing researches on quartz gyroscope mainly focus on the structure design of the tuning fork, which aim at obtaining a better vibration characterization. However, the fabrication of complicated structure is a c...The existing researches on quartz gyroscope mainly focus on the structure design of the tuning fork, which aim at obtaining a better vibration characterization. However, the fabrication of complicated structure is a challenge for present processes, and the imperfect fabrication process seriously affects the performances of the sensors. In this paper, a novel quartz cross-fork structure micromachined gyroscope is proposed. The sensor has a simple structure in x-y plane of quartz crystal. Unlike other quartz gyroscopes, the proposed gyroscope is based on shear stress detection to sense Coriolis’ force rather than normal stress detection. This feature can simplify the sensing electrode patterns and miniaturize the structure easily. Then the mechanical analysis of the structure is discussed. In order to obtain high sensitivities and uniform characteristics between different structures, the sensing beam is designed to be tapered, and the taper should be appreciably greater than 1°. This scheme is validated by finite element analysis software. The dynamic characteristic of the structure is analyzed by lumped parameter model. The dynamic stress in the beam and the detection sensitivity are deduced to optimize the structure parameter of gyroscope. Finally, the gyroscope is fabricated by quartz anisotropic wet etching. The prototype is characterized as follows. The drive mode frequency is 13.38 kHz, and the quality factor is about 900 in air. The scale factor is 1.45 mV/((°) s –1 ) and the nonlinearity is 3.6% in the dynamic range of ±200°/s. Process and test results show that the proposed quartz gyroscope can achieve a high performance at atmosphere pressure. The research can simplify the fabrication of the quartz gyroscope, and is taken as a novel method for the design of quartz gyroscope.展开更多
The quality factor(Q factor)is a crucial performance parameter for resonators.In this paper,a novel release method for highquality micro fused silica shell resonators with teeth-like tines with good surface morphology...The quality factor(Q factor)is a crucial performance parameter for resonators.In this paper,a novel release method for highquality micro fused silica shell resonators with teeth-like tines with good surface morphology is proposed.This method is based on femtosecond laser-assisted chemical etching.First,the optimal energy range of femtosecond laser modification is obtained through mechanism analysis.Second,the optimal parameters for a straight line and arc pattern are determined by optimizing the average output power,processing speed,and processing spacing.The results demonstrate why edge breakage in rounded corners is easy under different parameters.Finally,according to these conclusions,the processing is performed on a micro fused silica shell resonator with a Q factor exceeding 6 million.In addition,subsurface damage is rare throughout the fabrication process,and the surface roughness of the released cross section reaches the nanometer level.The improved Q factor helps suppress mechanical thermal noise and reduce zero bias and zero bias drift,constituting the primary method for enhancing the performance of the resonant gyroscope.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 51005239)
文摘The mechanical balance process is the key process to eliminate the quadrature error and improve the performance of the cupped wave gyro. The conventional mechanical balance method for cupped wave gyro based on cup-wall trimming requires high control accuracy of trimming quantity, which increases the production cost and decreases the fabrication efficiency in large extent. However, it is hard to reach the high balance accuracy with the natural frequency split of mHz grade by using the conventional method. In this paper, the lumped mass dynamic model of the cupped wave gyro is built by discretization method, and the effects of different position trimming on the natural frequency are analyzed. It is pointed out that trimming off a tiny quantity of material from cup-wall causes large variation of the natural frequency is the main reason for the low accuracy of the conventional mechanical balance method. Then, a precision balance method for cupped wave gyro based on cup-bottom trimming is presented and the entire procedures of this method are given. The static balance process and dynamic balance process of the precision balance method are simulated by the finite element software. The simulation result shows that the precision balance method based on cup-bottom trimming brings less additional natural frequency split in the static balance process, minimizes the natural frequency split to mHz grade and rectify the angle of mode offset to 0.1° grade in the dynamic balance process, furthermore, the method decreases the requirement for control accuracy of trimming quantity evidently. The research work provides references for structure optimization design and balance process plan of the cupped wave gyro.
基金Supported by National Natural Science Foundation of China(Grant Nos.51335011,51505489)
文摘Mechanical Quality factor(Q factor) of the resonator is an important parameter for the cylinder vibratory gyroscope(CVG). Traditional analytical methods mainly focus on a partial energy loss during the vibration process of the CVG resonator, thus are not accurate for the mechanical Q factor prediction. Therefore an integrated model including air damping loss, surface defect loss, support loss, thermoelastic damping loss and internal friction loss is proposed to obtain the mechanical Q factor of the CVG resonator. Based on structural dynamics and energy dissipation analysis, the contribution of each energy loss to the total mechanical Q factor is quantificationally analyzed. For the resonator with radius ranging from 10 mm to 20 mm, its mechanical Q factor is mainly related to the support loss, thermoelastic damping loss and internal friction loss, which are fundamentally determined by the geometric sizes and material properties of the resonator. In addition, resonators made of alloy 3J53 (Ni42CrTiA1), with different sizes, were experimentally fabricated to test the mechanical Q factor. The theoretical model is well verified by the experimental data, thus provides an effective theoretical method to design and predict the mechanical Q factor of the CVG resonator.
基金supported by National Natural Science Foundation of China(Grant No.51005240)
文摘The existing researches on quartz gyroscope mainly focus on the structure design of the tuning fork, which aim at obtaining a better vibration characterization. However, the fabrication of complicated structure is a challenge for present processes, and the imperfect fabrication process seriously affects the performances of the sensors. In this paper, a novel quartz cross-fork structure micromachined gyroscope is proposed. The sensor has a simple structure in x-y plane of quartz crystal. Unlike other quartz gyroscopes, the proposed gyroscope is based on shear stress detection to sense Coriolis’ force rather than normal stress detection. This feature can simplify the sensing electrode patterns and miniaturize the structure easily. Then the mechanical analysis of the structure is discussed. In order to obtain high sensitivities and uniform characteristics between different structures, the sensing beam is designed to be tapered, and the taper should be appreciably greater than 1°. This scheme is validated by finite element analysis software. The dynamic characteristic of the structure is analyzed by lumped parameter model. The dynamic stress in the beam and the detection sensitivity are deduced to optimize the structure parameter of gyroscope. Finally, the gyroscope is fabricated by quartz anisotropic wet etching. The prototype is characterized as follows. The drive mode frequency is 13.38 kHz, and the quality factor is about 900 in air. The scale factor is 1.45 mV/((°) s –1 ) and the nonlinearity is 3.6% in the dynamic range of ±200°/s. Process and test results show that the proposed quartz gyroscope can achieve a high performance at atmosphere pressure. The research can simplify the fabrication of the quartz gyroscope, and is taken as a novel method for the design of quartz gyroscope.
基金supported by the National Natural Science Foundation of China Regional Innovation and Development Joint Fund Key Support Project(Grant No.U21A20505)the National Natural Science Foundation of China(Grant Nos.62204261 and 52205613)。
文摘The quality factor(Q factor)is a crucial performance parameter for resonators.In this paper,a novel release method for highquality micro fused silica shell resonators with teeth-like tines with good surface morphology is proposed.This method is based on femtosecond laser-assisted chemical etching.First,the optimal energy range of femtosecond laser modification is obtained through mechanism analysis.Second,the optimal parameters for a straight line and arc pattern are determined by optimizing the average output power,processing speed,and processing spacing.The results demonstrate why edge breakage in rounded corners is easy under different parameters.Finally,according to these conclusions,the processing is performed on a micro fused silica shell resonator with a Q factor exceeding 6 million.In addition,subsurface damage is rare throughout the fabrication process,and the surface roughness of the released cross section reaches the nanometer level.The improved Q factor helps suppress mechanical thermal noise and reduce zero bias and zero bias drift,constituting the primary method for enhancing the performance of the resonant gyroscope.