This paper proposes a two-stage point cloud super resolution framework that combines local interpolation and deep neural network based readjustment. For the first stage, the authors apply a local interpolation method ...This paper proposes a two-stage point cloud super resolution framework that combines local interpolation and deep neural network based readjustment. For the first stage, the authors apply a local interpolation method to increase the density and uniformity of the target point cloud. For the second stage, the authors employ an outer-product neural network to readjust the position of points that are inserted at the first stage. Comparison examples are given to demonstrate that the proposed framework achieves a better accuracy than existing state-of-art approaches, such as PU-Net, Point Net and DGCNN(Source code is available at https://github.com/qwerty1319/PC-SR).展开更多
基金supported by the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization under Grant No.U1909210the National Nature Science Foundation of China under Grant Nos.61761136010,61772163。
文摘This paper proposes a two-stage point cloud super resolution framework that combines local interpolation and deep neural network based readjustment. For the first stage, the authors apply a local interpolation method to increase the density and uniformity of the target point cloud. For the second stage, the authors employ an outer-product neural network to readjust the position of points that are inserted at the first stage. Comparison examples are given to demonstrate that the proposed framework achieves a better accuracy than existing state-of-art approaches, such as PU-Net, Point Net and DGCNN(Source code is available at https://github.com/qwerty1319/PC-SR).