期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
长杆弹撞击陶瓷靶的一种数值模拟方法 被引量:4
1
作者 伍一顺 陈小伟 《爆炸与冲击》 EI CAS CSCD 北大核心 2020年第5期71-83,共13页
陶瓷材料具有高强度和低密度等特点,抗弹性能优越,被广泛用于各类装甲中。长杆弹撞击陶瓷靶时会发生径向流动、质量显著侵蚀而无明显侵彻的界面击溃现象,是陶瓷抗侵彻性能研究中具有重要研究价值的特殊现象。利用有限元软件AUTODYN建立... 陶瓷材料具有高强度和低密度等特点,抗弹性能优越,被广泛用于各类装甲中。长杆弹撞击陶瓷靶时会发生径向流动、质量显著侵蚀而无明显侵彻的界面击溃现象,是陶瓷抗侵彻性能研究中具有重要研究价值的特殊现象。利用有限元软件AUTODYN建立了长杆弹撞击陶瓷靶的二维轴对称计算模型,采用Lagrange和光滑粒子流体动力学(smooth particle hydrodynamics, SPH)算法,模拟了柱形钨合金长杆弹撞击带盖板的碳化硅陶瓷,通过改变长杆弹的撞击速度,得到了界面击溃、驻留转侵彻和直接侵彻3个不同现象。讨论了不同建模算法、边界条件以及材料参数对模拟结果的影响。通过网格收敛性验证和与实验结果进行拟合,综合验证了计算模型中算法、边界条件和参数设定的可靠性。结果表明,在建模中若同时使用SPH算法和Lagrange算法,需要考虑粒子和网格大小对于模拟结果的影响。针对长杆弹撞击陶瓷靶的界面击溃模拟,不建议对陶瓷材料采用SPH粒子建模。相关建模和参数选择方法对后续陶瓷抗侵彻/界面击溃的数值模拟具有重要的指导意义。 展开更多
关键词 陶瓷装甲 界面击溃 驻留转侵彻 SPH算法
下载PDF
Ask Me Any Type:Type Inference Plugin for Partial Code on the Web and in the Integrated Development Environment
2
作者 CHENG Yu HUANG Guanming +3 位作者 wu yishun ZHAO Zijie HE Zhenhao LU Jiaxing 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第4期349-356,共8页
Inferring the fully qualified names(FQNs)of undeclared receiving objects and non-fully-qualified type names(non-FQNs)in partial code is critical for effectively searching,understanding,and reusing partial code.Existin... Inferring the fully qualified names(FQNs)of undeclared receiving objects and non-fully-qualified type names(non-FQNs)in partial code is critical for effectively searching,understanding,and reusing partial code.Existing type inference tools,such as COSTER and SNR,rely on a symbolic knowledge base and adopt a dictionary-lookup strategy to map simple names of undeclared receiving objects and non-FQNs to FQNs.However,building a symbolic knowledge base requires parsing compilable code files,which limits the collection of APIs and code contexts,resulting in out-of-vocabulary(OOV)failures.To overcome the limitations of a symbolic knowledge base for FQN inference,we implemented Ask Me Any Type(AMAT),a type of inference plugin embedded in web browsers and integrated development environment(IDE).Unlike the dictionary-lookup strategy,AMAT uses a cloze-style fill-in-the-blank strategy for type inference.By treating code as text,AMAT leverages a fine-tuned large language model(LLM)as a neural knowledge base,thereby preventing the need for code compilation.Experimental results show that AMAT outperforms state-of-the-art tools such as COSTER and SNR.In practice,developers can directly reuse partial code by inferring the FQNs of unresolved type names in real time. 展开更多
关键词 type inference large language model prompt learning web and integrated development environment(IDE)plugin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部