On 18 January 2016,the Zhangjiazhuang high-speed railway tunnel in Ledu,Qinghai Province,China,underwent serious deformation and structural damage.A crack formed at the top of the tunnel and the concrete on the crown ...On 18 January 2016,the Zhangjiazhuang high-speed railway tunnel in Ledu,Qinghai Province,China,underwent serious deformation and structural damage.A crack formed at the top of the tunnel and the concrete on the crown peeled off.As a result,the tunnel could not be operated for three months.In order to determine the types and spatial distribution of the landslides in the region and the surface deformation characteristics associated with the tunnel deformation,we used field geological and geomorphological surveys,unmanned aerial vehicle image interpretation and differential interferometric synthetic aperture radar(D-In SAR) surface deformation monitoring.Nine ancient and old landslides were identified and analysed in the study area.Surface deformation monitoring and investigation of buildings in several villages on the slope front showed that the tunnel deformation was not related to deep-seated gravitational slope deformation.However,surface deformation monitoring revealed an active NEE–SWW fault in the area intersecting the tunnel at the location of the tunnel rupture.This constitutes a plausible mechanism for the deformation of the tunnel.Our study highlights the need for detailed engineering geomorphological investigations to better predict the occurrence of tunnel deformation events in the future.展开更多
基金funded by the National Key Research and Development Program of China (Grant No.2018YFC1504704)the National Natural Science Foundation of China (Grant No.41661144046)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.lzujbky-2018-k14)the Key Research and Development Program of Gansu Province (Grant No.18YF1WA114)。
文摘On 18 January 2016,the Zhangjiazhuang high-speed railway tunnel in Ledu,Qinghai Province,China,underwent serious deformation and structural damage.A crack formed at the top of the tunnel and the concrete on the crown peeled off.As a result,the tunnel could not be operated for three months.In order to determine the types and spatial distribution of the landslides in the region and the surface deformation characteristics associated with the tunnel deformation,we used field geological and geomorphological surveys,unmanned aerial vehicle image interpretation and differential interferometric synthetic aperture radar(D-In SAR) surface deformation monitoring.Nine ancient and old landslides were identified and analysed in the study area.Surface deformation monitoring and investigation of buildings in several villages on the slope front showed that the tunnel deformation was not related to deep-seated gravitational slope deformation.However,surface deformation monitoring revealed an active NEE–SWW fault in the area intersecting the tunnel at the location of the tunnel rupture.This constitutes a plausible mechanism for the deformation of the tunnel.Our study highlights the need for detailed engineering geomorphological investigations to better predict the occurrence of tunnel deformation events in the future.