We present results from a 484 km wide-angle seismic profilie acquired in the northwest part of the South China Sea (SCS) during OBS2006 cruise. The line that runs along a previously acquired multi-channel seismic li...We present results from a 484 km wide-angle seismic profilie acquired in the northwest part of the South China Sea (SCS) during OBS2006 cruise. The line that runs along a previously acquired multi-channel seismic line (SO49-18) crosses the continental slope of the northern margin, the Northwest Subbasin (NWSB) of the South China Sea, the Zhongsha Massif and partly the oceanic basin of the South China Sea. Seismic sections recorded on 13 ocean-bottom seismometers were used to identify refracted phases from the crustal layer and also reflected phases from the crust-mantle boundary (Moho). Inversion of the traveltimes using a simple start model reveals crustal images in the study area. The velocity model shows that crustal thickness below the continental slope is between 14 and 23 kin. The continental part of the line is characterized by gentle landward mantle uplift and an abrupt oeeanward one. The velocities in the lower crust do not exceed 6.9 km/s. With the new data we can exclude a high-velocity lower crustal body (velocities above 7.0 kin/s) at the location of the line. We conclude that this part of the South China Sea margin developed by a magma-poor rifting. Both, the NWSB and the Southwest Sub-basin (SWSB) reveal velocities typical for oceanic crust with crustal thickness between 5 and 7 kin. The Zhongsha Massif in between is extremely stretched with only 6-10 km continental crust left. Crustal velocity is below 6.5 kin/s; possibly indicating the absence of the lower crust. Multi-channel seismic profile shows that the Yitongansha Uplift in the slope area and the Zhongsha Massif are only mildly deformed. We considered them as rigid continent blocks which acted as rift shoulders of the main rift subsequently resulting in the formation of the Northwest Sub-basin. The extension was mainly accommodated by a ductile lower crustal flows, which might have been extremely attenuated and flow into the oceanic basin during the spreading stage. We compared the crustal structures along the northern margin and found an east-west thicken trend of the crust below the continent slope. This might be contributed by the east-west sea-floor spreading along the continental margin.展开更多
The crustal structure of the northwestern sub-basin area of the South China Sea was modeled by inverting a wide-angle seismic survey line across the entire region and on both sides of its bounding continental margins....The crustal structure of the northwestern sub-basin area of the South China Sea was modeled by inverting a wide-angle seismic survey line across the entire region and on both sides of its bounding continental margins. The survey line extended over 484 km. A total of 14 Ocean Bottom Seismometers (OBS) were deployed at intervals of 30 km to record air-gun array sources with a combined volume of 5160 in 3 . The crustal velocity structure of the northwestern sub-basin area was acquired through the integration of multi-channel seismic data. OBS data were processed and modeled initially using ray tracing inversion techniques. Results indicate that crustal thickness under the continental slope decreases from 21 to 11 km, crustal thickness of the northwestern sub-basin is 7.7 km, and the depth to the Moho ascends from 21 km under the upper continental slope to 11 km under the middle basin. The crust of the northwestern sub-basin is similar to that of the eastern sub-basin in its oceanic crustal structure. This structure has a thicker layer 1 (sedimentary layer) and a thinner layer 2. These characteristics are especially clear in the eastern sub-basin, which differs somewhat from typical oceanic crust. The tectonic geometry and velocity structure of the northwestern sub-basin and its margins comprise a symmetrical conjugate and indicate a pure shear mode with regard to the continental margin rifting mechanism. We did not find clear seismic signals from high velocity layers under the lower crust of the continental margin in the northern part of the northwestern sub-basin, which provides new evidence for the idea that the western part of the northern continental margin of the South China Sea constitutes nonvolcanic crust. Because the seafloor spreading period of the northwestern sub-basin was short, layer 2 might have experienced asymmetrical basalt magma flows, which may have blurred the magnetic anomaly lineations of the northwestern sub-basin.展开更多
基金financially supported by the National Basic Research Program(973) of China(No. 2007CB41170403)the National Natural Science Foundation of China(No.91028006 and 41074066)
文摘We present results from a 484 km wide-angle seismic profilie acquired in the northwest part of the South China Sea (SCS) during OBS2006 cruise. The line that runs along a previously acquired multi-channel seismic line (SO49-18) crosses the continental slope of the northern margin, the Northwest Subbasin (NWSB) of the South China Sea, the Zhongsha Massif and partly the oceanic basin of the South China Sea. Seismic sections recorded on 13 ocean-bottom seismometers were used to identify refracted phases from the crustal layer and also reflected phases from the crust-mantle boundary (Moho). Inversion of the traveltimes using a simple start model reveals crustal images in the study area. The velocity model shows that crustal thickness below the continental slope is between 14 and 23 kin. The continental part of the line is characterized by gentle landward mantle uplift and an abrupt oeeanward one. The velocities in the lower crust do not exceed 6.9 km/s. With the new data we can exclude a high-velocity lower crustal body (velocities above 7.0 kin/s) at the location of the line. We conclude that this part of the South China Sea margin developed by a magma-poor rifting. Both, the NWSB and the Southwest Sub-basin (SWSB) reveal velocities typical for oceanic crust with crustal thickness between 5 and 7 kin. The Zhongsha Massif in between is extremely stretched with only 6-10 km continental crust left. Crustal velocity is below 6.5 kin/s; possibly indicating the absence of the lower crust. Multi-channel seismic profile shows that the Yitongansha Uplift in the slope area and the Zhongsha Massif are only mildly deformed. We considered them as rigid continent blocks which acted as rift shoulders of the main rift subsequently resulting in the formation of the Northwest Sub-basin. The extension was mainly accommodated by a ductile lower crustal flows, which might have been extremely attenuated and flow into the oceanic basin during the spreading stage. We compared the crustal structures along the northern margin and found an east-west thicken trend of the crust below the continent slope. This might be contributed by the east-west sea-floor spreading along the continental margin.
基金supported by National Basic Research Program of China (Grant No. 2007CB411701)National Natural Science Foundation of China (Grant Nos. 40876035 and 91028006)Scientific Research Fund of the Second Institute of Oceanography, State Oceanic Administration (Grant No. JG200803)
文摘The crustal structure of the northwestern sub-basin area of the South China Sea was modeled by inverting a wide-angle seismic survey line across the entire region and on both sides of its bounding continental margins. The survey line extended over 484 km. A total of 14 Ocean Bottom Seismometers (OBS) were deployed at intervals of 30 km to record air-gun array sources with a combined volume of 5160 in 3 . The crustal velocity structure of the northwestern sub-basin area was acquired through the integration of multi-channel seismic data. OBS data were processed and modeled initially using ray tracing inversion techniques. Results indicate that crustal thickness under the continental slope decreases from 21 to 11 km, crustal thickness of the northwestern sub-basin is 7.7 km, and the depth to the Moho ascends from 21 km under the upper continental slope to 11 km under the middle basin. The crust of the northwestern sub-basin is similar to that of the eastern sub-basin in its oceanic crustal structure. This structure has a thicker layer 1 (sedimentary layer) and a thinner layer 2. These characteristics are especially clear in the eastern sub-basin, which differs somewhat from typical oceanic crust. The tectonic geometry and velocity structure of the northwestern sub-basin and its margins comprise a symmetrical conjugate and indicate a pure shear mode with regard to the continental margin rifting mechanism. We did not find clear seismic signals from high velocity layers under the lower crust of the continental margin in the northern part of the northwestern sub-basin, which provides new evidence for the idea that the western part of the northern continental margin of the South China Sea constitutes nonvolcanic crust. Because the seafloor spreading period of the northwestern sub-basin was short, layer 2 might have experienced asymmetrical basalt magma flows, which may have blurred the magnetic anomaly lineations of the northwestern sub-basin.