We report on the fabrication of a class of surface-enhanced Raman scattering(SERS)active thermometers,which consists of60 nm gold nanoparticles,encoded with Raman-active dyes,and a layer of thermoresponsive poly(N-iso...We report on the fabrication of a class of surface-enhanced Raman scattering(SERS)active thermometers,which consists of60 nm gold nanoparticles,encoded with Raman-active dyes,and a layer of thermoresponsive poly(N-isopropylacrylamide)(PNIPAM)brush with different chain lengths.These SERS-active nanoparticles can be optimized to maintain spectrally silent when staying as single particles in dispersion.Increasing temperature in a wide range from 25 to 55°C can reversibly induce the interparticle self-aggregation and turn on the SERS fingerprint signals with up to 58-fold of enhancement by taking advantage of the interparticle plasmonic coupling generated in the process of thermo-induced nanoparticles self-aggregation.Moreover,the most significative point is that these SERS probes could maintain their response to temperature and present all fingerprint signals in the presence of a colored complex.However,the UV-Vis spectra can distinguish the differences faintly and the solution color shows little change in such complex mixture.This proof-of-concept and Raman technique applied here allow for dynamic SERS platform for onsite temperature detection in a wide temperature range and offer unique advantages over other detection schemes.展开更多
基金supported by the Fundamental Research Funds for the Central Universities
文摘We report on the fabrication of a class of surface-enhanced Raman scattering(SERS)active thermometers,which consists of60 nm gold nanoparticles,encoded with Raman-active dyes,and a layer of thermoresponsive poly(N-isopropylacrylamide)(PNIPAM)brush with different chain lengths.These SERS-active nanoparticles can be optimized to maintain spectrally silent when staying as single particles in dispersion.Increasing temperature in a wide range from 25 to 55°C can reversibly induce the interparticle self-aggregation and turn on the SERS fingerprint signals with up to 58-fold of enhancement by taking advantage of the interparticle plasmonic coupling generated in the process of thermo-induced nanoparticles self-aggregation.Moreover,the most significative point is that these SERS probes could maintain their response to temperature and present all fingerprint signals in the presence of a colored complex.However,the UV-Vis spectra can distinguish the differences faintly and the solution color shows little change in such complex mixture.This proof-of-concept and Raman technique applied here allow for dynamic SERS platform for onsite temperature detection in a wide temperature range and offer unique advantages over other detection schemes.