Based on particle approach and tidal flow model this article studies the behavior of the oil slick on the water surface in the Huangpu River, a tidal waterway in Shanghai. In order to track the oil slick motion, a two...Based on particle approach and tidal flow model this article studies the behavior of the oil slick on the water surface in the Huangpu River, a tidal waterway in Shanghai. In order to track the oil slick motion, a two-dimensional oil trajectory model is used. The dynamical properties of spilled oil characterized by advection, oil spreading and turbulent diffusion are considered in the model. The simulation results consistent with the flume experimental data show that the model is applicable. Both simulation and experiment illustrate that the tidal flow has a great influence on the oil slick motion. The calculated results can be used as a reference for the response to oil spill accidents in rivers.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.10972134)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20050280008)
文摘Based on particle approach and tidal flow model this article studies the behavior of the oil slick on the water surface in the Huangpu River, a tidal waterway in Shanghai. In order to track the oil slick motion, a two-dimensional oil trajectory model is used. The dynamical properties of spilled oil characterized by advection, oil spreading and turbulent diffusion are considered in the model. The simulation results consistent with the flume experimental data show that the model is applicable. Both simulation and experiment illustrate that the tidal flow has a great influence on the oil slick motion. The calculated results can be used as a reference for the response to oil spill accidents in rivers.