期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Evaluation of the Ultimate Capacity of Friction Piles 被引量:1
1
作者 wael n. abd elsamee 《Engineering(科研)》 2012年第11期778-789,共12页
The precise prediction of maximum load carrying capacity of bored piles is a complex problem because the load is a function of a large number of factors. These factors include method of boring, method of concreting, q... The precise prediction of maximum load carrying capacity of bored piles is a complex problem because the load is a function of a large number of factors. These factors include method of boring, method of concreting, quality of concrete, expertise of the construction staff, the ground conditions and the pile geometry. To ascertain the field performance and estimate load carrying capacities of piles, in-situ pile load tests are conducted. Due to practical and time constraints, it is not possible to load the pile up-to failure. In this study, field pile load test data is analyzed to estimate the ultimate load for friction piles. The analysis is based on three pile load test results. The tests are conducted at the site of The Cultural and Recreational Complex project in Port Said, Egypt. Three pile load tests are performed on bored piles of 900 mm diameter and 50 m length. Geotechnical investigations at the site are carried out to a maximum depth of 60 m. Ultimate capacities of piles are determined according to different methods including Egyptian Code of practice (2005), Tan-gent-tangent, Hansen (1963), Chin (1970), Ahmed and Pise (1997) and Decourt (1999). It was concluded that approxi- mately 8% of the ultimate load is resisted by bearing at the base of the pile, and that up to 92% of the load is resisted by friction along the shaft. Based on a comparison of pile capacity predictions using different method, recommendations are made. A new method is proposed to calculate the ultimate capacity of the pile from pile load test data. The ultimate capacity of the bored piles predicted using the proposed method appears to be reliable and compares well to different available methods. 展开更多
关键词 SOIL PILE Capacity Bored PILE FRICTION PILE PILE LOAD
下载PDF
New Method for Prediction Pile Capacity Executed by Continuous Flight Auger (CFA)
2
作者 wael n. abd elsamee 《Engineering(科研)》 2013年第4期344-354,共11页
A study of piles is quit complex and the estimation of carrying capacity is calculated from theoretical formula and load test results. The design resistance may be calculated using conventional static pile design theo... A study of piles is quit complex and the estimation of carrying capacity is calculated from theoretical formula and load test results. The design resistance may be calculated using conventional static pile design theory. The pile founding depths should be predetermined before installation from a site geotechnical investigation. To ascertain the field performance and estimate load carrying capacities of piles, in-situ pile load tests should be conducted. In this study, field pile load test data is analyzed to estimate the ultimate load for end bearing piles. The investigated site is about 100 × 110 m located in Alexandria, Egypt. Geotechnical investigations at the site are carried out to a maximum depth of 45 m. Four borings have been done in field. The tests are conducted at the site for two skelton structure buildings to be constructed on raft foundation rested on piles executed by continuous flight auger. Four pile load tests are performed on 600 mmdiameters and 27 mlengths. Ultimate capacities of piles are determined according to different methods. It is concluded that the percentage of friction load carried by the shaft along the pile length is about 46% of total load while the percentage of load carried by the end bearing is 54% of total load. A new proposed method by the author is presented to calculate the ultimate capacity of pile from pile load test. The proposed method depends on the settlement of pile without taken into consideration the elastic deformation. An empirical formula is presented from the relationship between stress and settlement of pile due to friction and end bearing only after deducting the elastic deformation. However, the obtained results for the ultimate capacity of end bearing piles are considered to be more accurate than other methods. The proposed method appears to give bitter results that agrees well with the theoretical predictions. The proposed method is easier, quicker and more reliable. 展开更多
关键词 Soil PILE Capacity FLIGHT AUGER (CFA) End BEARING PILE PILE Load
下载PDF
An Experimental Study on the Effect of Foundation Depth, Size and Shape on Subgrade Reaction of Cohessionless Soil
3
作者 wael n. abd elsamee 《Engineering(科研)》 2013年第10期785-795,共11页
The modulus of subgrade reaction ks depends on several factors such as the size and shape of the foundation as well as the embedment depth of the foundation. The present study is an experimental analysis using plate l... The modulus of subgrade reaction ks depends on several factors such as the size and shape of the foundation as well as the embedment depth of the foundation. The present study is an experimental analysis using plate load test to determine the effect of foundation depth, size as well as the shape on the modulus of subgrade reaction (ks) of cohesionless soils. It was carried out by using nine rigid steel plates with different sizes and shapes (circular, square and retangular). The tests were carried out on cohessionless soil with different relative densities under different applied pressures. The settlement has been measured at the surface of the plate for different depths of footings. The ultimate bearing capacity [qu] has been determined from the stress-settlement relationships. The allowable bearing capacity (qa) was determined by dividing the ultimate bearing capacity (qu) by F.S. = 3.0, after which the corresponding settlement (Sa) has been obtained. However, ks was calculated based on dividing the allowable bearing capacity (qa) by the corresponding settlement (Sa). From the present study it is concluded that the subgrade reaction ks of cohessionless soil increases with increasing foundation depth as well as foundation size. In addition, subgrade reaction ks of cohessionless soil under rectangular footing is higher than that under square and that under circular one with same equivalent area. An empirical formula is presented to calculate the subgrade reaction ks of cohessionless soil under square foundation taking into consideration foundation depth. Fair agreement has been obtained between values of ks from the empirical formula at depth of footing = 0.00 B and Biot (1937) as well as Meyerhof and Baike (1965). 展开更多
关键词 SUBGRADE Reaction PLATE LOAD Test FOUNDATION DEPTH Size SHAPE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部