The long-term trends in the occurrence frequency of pre-summer daytime and nocturnal extreme hourly rainfall(EXHR) during 1988-2018 in Hong Kong and their spatial distributions are examined and analyzed. Despite a sig...The long-term trends in the occurrence frequency of pre-summer daytime and nocturnal extreme hourly rainfall(EXHR) during 1988-2018 in Hong Kong and their spatial distributions are examined and analyzed. Despite a significant increasing trend observed in the occurrence frequency of pre-summer EXHRs during the investigated period,the increase in daytime and nocturnal EXHRs show distinct spatial patterns. Nocturnal EXHRs show uniform increasing trends over the entire Hong Kong. However, the increase in daytime EXHRs is concentrated over the northern or eastern areas of Hong Kong, indicating a downstream shift of pre-summer EXHRs in Hong Kong with regard to the prevailing southwesterly monsoonal flows in south China. The clustering of weather types associated with daytime and nocturnal EXHRs further reveals that the increase in EXHRs over Hong Kong are mainly contributed by the increase of the events associated with southwesterly monsoonal flows with relatively high speeds. During the past few decades, the southwesterly monsoonal flows at coastal south China have undergone a substantial weakening due to the increased surface roughness induced by the urbanization over the Guangdong-Hong Kong-Macao Greater Bay Area since 1990s,leading to enhanced low-level convergence and thus significant increase in EXHRs at coastal south China. Meanwhile,daytime sea-wind circulation at coastal south China is markedly enhanced during the investigated period, which is the main reason for the northward shift of daytime EXHRs in Hong Kong. In addition, the blocked southwesterly monsoonal flows at coastal south China are detoured eastward, leading to stronger convergence and increase in EXHRs at eastern coast of Hong Kong, especially during daytime, when the easterly sea winds prevail at the region.展开更多
Forecasting wind structure of tropical cyclone(TC)is vital in assessment of impact due to high winds using Numerical Weather Prediction(NWP)model.The usual verification technique on TC wind structure forecasts are bas...Forecasting wind structure of tropical cyclone(TC)is vital in assessment of impact due to high winds using Numerical Weather Prediction(NWP)model.The usual verification technique on TC wind structure forecasts are based on grid-to-grid comparisons between forecast field and the actual field.However,precision of traditional verification measures is easily affected by small scale errors and thus cannot well discriminate the accuracy or effectiveness of NWP model forecast.In this study,the Method for Object-Based Diagnostic Evaluation(MODE),which has been widely adopted in verifying precipitation fields,is utilized in TC’s wind field verification for the first time.The TC wind field forecast of deterministic NWP model and Ensemble Prediction System(EPS)of the European Centre for Medium-Range Weather Forecasts(ECMWF)over the western North Pacific and the South China Sea in 2020 were evaluated.A MODE score of 0.5 is used as a threshold value to represent a skillful(or good)forecast.It is found that the R34(radius of 34 knots)wind field structure forecasts within 72 h are good regardless of DET or EPS.The performance of R50 and R64 is slightly worse but the R50 forecasts within 48 h remain good,with MODE exceeded 0.5.The R64forecast within 48 h are worth for reference as well with MODE of around 0.5.This study states that the TC wind field structure forecast by ECMWF is skillful for TCs over the western North Pacific and the South China Sea.展开更多
基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)Hong Kong Research Grant Council(Aoe/E-603/18)。
文摘The long-term trends in the occurrence frequency of pre-summer daytime and nocturnal extreme hourly rainfall(EXHR) during 1988-2018 in Hong Kong and their spatial distributions are examined and analyzed. Despite a significant increasing trend observed in the occurrence frequency of pre-summer EXHRs during the investigated period,the increase in daytime and nocturnal EXHRs show distinct spatial patterns. Nocturnal EXHRs show uniform increasing trends over the entire Hong Kong. However, the increase in daytime EXHRs is concentrated over the northern or eastern areas of Hong Kong, indicating a downstream shift of pre-summer EXHRs in Hong Kong with regard to the prevailing southwesterly monsoonal flows in south China. The clustering of weather types associated with daytime and nocturnal EXHRs further reveals that the increase in EXHRs over Hong Kong are mainly contributed by the increase of the events associated with southwesterly monsoonal flows with relatively high speeds. During the past few decades, the southwesterly monsoonal flows at coastal south China have undergone a substantial weakening due to the increased surface roughness induced by the urbanization over the Guangdong-Hong Kong-Macao Greater Bay Area since 1990s,leading to enhanced low-level convergence and thus significant increase in EXHRs at coastal south China. Meanwhile,daytime sea-wind circulation at coastal south China is markedly enhanced during the investigated period, which is the main reason for the northward shift of daytime EXHRs in Hong Kong. In addition, the blocked southwesterly monsoonal flows at coastal south China are detoured eastward, leading to stronger convergence and increase in EXHRs at eastern coast of Hong Kong, especially during daytime, when the easterly sea winds prevail at the region.
基金supported by the ESCAP/WMO Typhoon Committee Research Fellowship Scheme 2020 hosted by the Hong Kong Observatorythe Shanghai Natural Science Foundation(21ZR1477300)+2 种基金FengYun Application Pioneering Project(FY-APP-2021.0106)WMO Typhoon Landfall Forecast Demonstration Project(TLFDP)the Typhoon Scientific and Technological Innovation Group of Shanghai Meteorological Service。
文摘Forecasting wind structure of tropical cyclone(TC)is vital in assessment of impact due to high winds using Numerical Weather Prediction(NWP)model.The usual verification technique on TC wind structure forecasts are based on grid-to-grid comparisons between forecast field and the actual field.However,precision of traditional verification measures is easily affected by small scale errors and thus cannot well discriminate the accuracy or effectiveness of NWP model forecast.In this study,the Method for Object-Based Diagnostic Evaluation(MODE),which has been widely adopted in verifying precipitation fields,is utilized in TC’s wind field verification for the first time.The TC wind field forecast of deterministic NWP model and Ensemble Prediction System(EPS)of the European Centre for Medium-Range Weather Forecasts(ECMWF)over the western North Pacific and the South China Sea in 2020 were evaluated.A MODE score of 0.5 is used as a threshold value to represent a skillful(or good)forecast.It is found that the R34(radius of 34 knots)wind field structure forecasts within 72 h are good regardless of DET or EPS.The performance of R50 and R64 is slightly worse but the R50 forecasts within 48 h remain good,with MODE exceeded 0.5.The R64forecast within 48 h are worth for reference as well with MODE of around 0.5.This study states that the TC wind field structure forecast by ECMWF is skillful for TCs over the western North Pacific and the South China Sea.