期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
A Hybrid Cybersecurity Algorithm for Digital Image Transmission over Advanced Communication Channel Models
1
作者 Naglaa F.Soliman Fatma E.Fadl-Allah +3 位作者 walid el-shafai Mahmoud I.Aly Maali Alabdulhafith Fathi E.Abd El-Samie 《Computers, Materials & Continua》 SCIE EI 2024年第4期201-241,共41页
The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication ... The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication standards.The Single Carrier Frequency Division Multiple Access(SC-FDMA)is adopted for broadband wireless communications,because of its low sensitivity to carrier frequency offsets and low Peak-to-Average Power Ratio(PAPR).Data transmission through open-channel networks requires much concentration on security,reliability,and integrity.The data need a space away fromunauthorized access,modification,or deletion.These requirements are to be fulfilled by digital image watermarking and encryption.This paper ismainly concerned with secure image communication over the wireless SC-FDMA systemas an adopted communication standard.It introduces a robust image communication framework over SC-FDMA that comprises digital image watermarking and encryption to improve image security,while maintaining a high-quality reconstruction of images at the receiver side.The proposed framework allows image watermarking based on the Discrete Cosine Transform(DCT)merged with the Singular Value Decomposition(SVD)in the so-called DCT-SVD watermarking.In addition,image encryption is implemented based on chaos and DNA encoding.The encrypted watermarked images are then transmitted through the wireless SC-FDMA system.The linearMinimumMean Square Error(MMSE)equalizer is investigated in this paper to mitigate the effect of channel fading and noise on the transmitted images.Two subcarrier mapping schemes,namely localized and interleaved schemes,are compared in this paper.The study depends on different channelmodels,namely PedestrianAandVehicularA,with a modulation technique namedQuadratureAmplitude Modulation(QAM).Extensive simulation experiments are conducted and introduced in this paper for efficient transmission of encrypted watermarked images.In addition,different variants of SC-FDMA based on the Discrete Wavelet Transform(DWT),Discrete Cosine Transform(DCT),and Fast Fourier Transform(FFT)are considered and compared for the image communication task.The simulation results and comparison demonstrate clearly that DWT-SC-FDMAis better suited to the transmission of the digital images in the case of PedestrianAchannels,while the DCT-SC-FDMA is better suited to the transmission of the digital images in the case of Vehicular A channels. 展开更多
关键词 Cybersecurity applications image transmission channel models modulation techniques watermarking and encryption
下载PDF
An Efficient Medical Image Deep Fusion Model Based on Convolutional Neural Networks 被引量:1
2
作者 walid el-shafai Noha A.El-Hag +5 位作者 Ahmed Sedik Ghada Elbanby Fathi E.Abd El-Samie Naglaa F.Soliman Hussah Nasser AlEisa Mohammed E.Abdel Samea 《Computers, Materials & Continua》 SCIE EI 2023年第2期2905-2925,共21页
Medical image fusion is considered the best method for obtaining one image with rich details for efficient medical diagnosis and therapy.Deep learning provides a high performance for several medical image analysis app... Medical image fusion is considered the best method for obtaining one image with rich details for efficient medical diagnosis and therapy.Deep learning provides a high performance for several medical image analysis applications.This paper proposes a deep learning model for the medical image fusion process.This model depends on Convolutional Neural Network(CNN).The basic idea of the proposed model is to extract features from both CT and MR images.Then,an additional process is executed on the extracted features.After that,the fused feature map is reconstructed to obtain the resulting fused image.Finally,the quality of the resulting fused image is enhanced by various enhancement techniques such as Histogram Matching(HM),Histogram Equalization(HE),fuzzy technique,fuzzy type,and Contrast Limited Histogram Equalization(CLAHE).The performance of the proposed fusion-based CNN model is measured by various metrics of the fusion and enhancement quality.Different realistic datasets of different modalities and diseases are tested and implemented.Also,real datasets are tested in the simulation analysis. 展开更多
关键词 Image fusion CNN deep learning feature extraction evaluation metrics medical diagnosis
下载PDF
COVID-19 Classification from X-Ray Images:An Approach to Implement Federated Learning on Decentralized Dataset 被引量:1
3
作者 Ali Akbar Siddique S.M.Umar Talha +3 位作者 M.Aamir Abeer D.Algarni Naglaa F.Soliman walid el-shafai 《Computers, Materials & Continua》 SCIE EI 2023年第5期3883-3901,共19页
The COVID-19 pandemic has devastated our daily lives,leaving horrific repercussions in its aftermath.Due to its rapid spread,it was quite difficult for medical personnel to diagnose it in such a big quantity.Patients ... The COVID-19 pandemic has devastated our daily lives,leaving horrific repercussions in its aftermath.Due to its rapid spread,it was quite difficult for medical personnel to diagnose it in such a big quantity.Patients who test positive for Covid-19 are diagnosed via a nasal PCR test.In comparison,polymerase chain reaction(PCR)findings take a few hours to a few days.The PCR test is expensive,although the government may bear expenses in certain places.Furthermore,subsets of the population resist invasive testing like swabs.Therefore,chest X-rays or Computerized Vomography(CT)scans are preferred in most cases,and more importantly,they are non-invasive,inexpensive,and provide a faster response time.Recent advances in Artificial Intelligence(AI),in combination with state-of-the-art methods,have allowed for the diagnosis of COVID-19 using chest x-rays.This article proposes a method for classifying COVID-19 as positive or negative on a decentralized dataset that is based on the Federated learning scheme.In order to build a progressive global COVID-19 classification model,two edge devices are employed to train the model on their respective localized dataset,and a 3-layered custom Convolutional Neural Network(CNN)model is used in the process of training the model,which can be deployed from the server.These two edge devices then communicate their learned parameter and weight to the server,where it aggregates and updates the globalmodel.The proposed model is trained using an image dataset that can be found on Kaggle.There are more than 13,000 X-ray images in Kaggle Database collection,from that collection 9000 images of Normal and COVID-19 positive images are used.Each edge node possesses a different number of images;edge node 1 has 3200 images,while edge node 2 has 5800.There is no association between the datasets of the various nodes that are included in the network.By doing it in this manner,each of the nodes will have access to a separate image collection that has no correlation with each other.The diagnosis of COVID-19 has become considerably more efficient with the installation of the suggested algorithm and dataset,and the findings that we have obtained are quite encouraging. 展开更多
关键词 Artificial intelligence deep learning federated learning COVID-19 decentralized image dataset
下载PDF
Hybrid of Distributed Cumulative Histograms and Classification Model for Attack Detection 被引量:1
4
作者 Mostafa Nassar Anas M.Ali +5 位作者 walid el-shafai Adel Saleeb Fathi E.Abd El-Samie Naglaa F.Soliman Hussah Nasser AlEisa Hossam Eldin H.Ahmed 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期2235-2247,共13页
Traditional security systems are exposed to many various attacks,which represents a major challenge for the spread of the Internet in the future.Innovative techniques have been suggested for detecting attacks using ma... Traditional security systems are exposed to many various attacks,which represents a major challenge for the spread of the Internet in the future.Innovative techniques have been suggested for detecting attacks using machine learning and deep learning.The significant advantage of deep learning is that it is highly efficient,but it needs a large training time with a lot of data.Therefore,in this paper,we present a new feature reduction strategy based on Distributed Cumulative Histograms(DCH)to distinguish between dataset features to locate the most effective features.Cumulative histograms assess the dataset instance patterns of the applied features to identify the most effective attributes that can significantly impact the classification results.Three different models for detecting attacks using Convolutional Neural Network(CNN)and Long Short-Term Memory Network(LSTM)are also proposed.The accuracy test of attack detection using the hybrid model was 98.96%on the UNSW-NP15 dataset.The proposed model is compared with wrapper-based and filter-based Feature Selection(FS)models.The proposed model reduced classification time and increased detection accuracy. 展开更多
关键词 Feature selection DCH LSTM CNN security systems
下载PDF
Digital Twin-Based Automated Fault Diagnosis in Industrial IoT Applications
5
作者 Samah Alshathri Ezz El-Din Hemdan +1 位作者 walid el-shafai Amged Sayed 《Computers, Materials & Continua》 SCIE EI 2023年第4期183-196,共14页
In recent years, Digital Twin (DT) has gained significant interestfrom academia and industry due to the advanced in information technology,communication systems, Artificial Intelligence (AI), Cloud Computing (CC),and ... In recent years, Digital Twin (DT) has gained significant interestfrom academia and industry due to the advanced in information technology,communication systems, Artificial Intelligence (AI), Cloud Computing (CC),and Industrial Internet of Things (IIoT). The main concept of the DT isto provide a comprehensive tangible, and operational explanation of anyelement, asset, or system. However, it is an extremely dynamic taxonomydeveloping in complexity during the life cycle that produces a massive amountof engendered data and information. Likewise, with the development of AI,digital twins can be redefined and could be a crucial approach to aid theInternet of Things (IoT)-based DT applications for transferring the data andvalue onto the Internet with better decision-making. Therefore, this paperintroduces an efficient DT-based fault diagnosis model based on machinelearning (ML) tools. In this framework, the DT model of the machine isconstructed by creating the simulation model. In the proposed framework,the Genetic algorithm (GA) is used for the optimization task to improvethe classification accuracy. Furthermore, we evaluate the proposed faultdiagnosis framework using performance metrics such as precision, accuracy,F-measure, and recall. The proposed framework is comprehensively examinedusing the triplex pump fault diagnosis. The experimental results demonstratedthat the hybrid GA-ML method gives outstanding results compared to MLmethods like LogisticRegression (LR), Na飗e Bayes (NB), and SupportVectorMachine (SVM). The suggested framework achieves the highest accuracyof 95% for the employed hybrid GA-SVM. The proposed framework willeffectively help industrial operators make an appropriate decision concerningthe fault analysis for IIoT applications in the context of Industry 4.0. 展开更多
关键词 Automated fault diagnosis control system ML AI CC IIoT digital twins genetic algorithm GA-ML technique
下载PDF
Proposed Biometric Security System Based on Deep Learning and Chaos Algorithms
6
作者 Iman Almomani walid el-shafai +3 位作者 Aala AlKhayer Albandari Alsumayt Sumayh S.Aljameel Khalid Alissa 《Computers, Materials & Continua》 SCIE EI 2023年第2期3515-3537,共23页
Nowadays,there is tremendous growth in biometric authentication and cybersecurity applications.Thus,the efficient way of storing and securing personal biometric patterns is mandatory in most governmental and private s... Nowadays,there is tremendous growth in biometric authentication and cybersecurity applications.Thus,the efficient way of storing and securing personal biometric patterns is mandatory in most governmental and private sectors.Therefore,designing and implementing robust security algorithms for users’biometrics is still a hot research area to be investigated.This work presents a powerful biometric security system(BSS)to protect different biometric modalities such as faces,iris,and fingerprints.The proposed BSSmodel is based on hybridizing auto-encoder(AE)network and a chaos-based ciphering algorithm to cipher the details of the stored biometric patterns and ensures their secrecy.The employed AE network is unsupervised deep learning(DL)structure used in the proposed BSS model to extract main biometric features.These obtained features are utilized to generate two random chaos matrices.The first random chaos matrix is used to permute the pixels of biometric images.In contrast,the second random matrix is used to further cipher and confuse the resulting permuted biometric pixels using a two-dimensional(2D)chaotic logisticmap(CLM)algorithm.To assess the efficiency of the proposed BSS,(1)different standardized color and grayscale images of the examined fingerprint,faces,and iris biometrics were used(2)comprehensive security and recognition evaluation metrics were measured.The assessment results have proven the authentication and robustness superiority of the proposed BSSmodel compared to other existing BSSmodels.For example,the proposed BSS succeeds in getting a high area under the receiver operating characteristic(AROC)value that reached 99.97%and low rates of 0.00137,0.00148,and 3516 CMC,2023,vol.74,no.20.00157 for equal error rate(EER),false reject rate(FRR),and a false accept rate(FAR),respectively. 展开更多
关键词 Biometric security deep learning AE network 2D CLM cybersecurity and authentication applications feature extraction unsupervised learning
下载PDF
Shadow Extraction and Elimination of Moving Vehicles for Tracking Vehicles
7
作者 Kalpesh Jadav Vishal Sorathiya +5 位作者 walid el-shafai Torki Altameem Moustafa HAly Vipul Vekariya Kawsar Ahmed Francis MBui 《Computers, Materials & Continua》 SCIE EI 2023年第11期2009-2030,共22页
Shadow extraction and elimination is essential for intelligent transportation systems(ITS)in vehicle tracking application.The shadow is the source of error for vehicle detection,which causes misclassification of vehic... Shadow extraction and elimination is essential for intelligent transportation systems(ITS)in vehicle tracking application.The shadow is the source of error for vehicle detection,which causes misclassification of vehicles and a high false alarm rate in the research of vehicle counting,vehicle detection,vehicle tracking,and classification.Most of the existing research is on shadow extraction of moving vehicles in high intensity and on standard datasets,but the process of extracting shadows from moving vehicles in low light of real scenes is difficult.The real scenes of vehicles dataset are generated by self on the Vadodara–Mumbai highway during periods of poor illumination for shadow extraction of moving vehicles to address the above problem.This paper offers a robust shadow extraction of moving vehicles and its elimination for vehicle tracking.The method is distributed into two phases:In the first phase,we extract foreground regions using a mixture of Gaussian model,and then in the second phase,with the help of the Gamma correction,intensity ratio,negative transformation,and a combination of Gaussian filters,we locate and remove the shadow region from the foreground areas.Compared to the outcomes proposed method with outcomes of an existing method,the suggested method achieves an average true negative rate of above 90%,a shadow detection rate SDR(η%),and a shadow discrimination rate SDR(ξ%)of 80%.Hence,the suggested method is more appropriate for moving shadow detection in real scenes. 展开更多
关键词 Change illuminations ImageJ software intelligent traffic systems mixture of Gaussian model National Institute of Health vehicle tracking
下载PDF
Chimp Optimization Algorithm Based Feature Selection with Machine Learning for Medical Data Classification
8
作者 Firas Abedi Hayder M.A.Ghanimi +6 位作者 Abeer D.Algarni Naglaa F.Soliman walid el-shafai Ali Hashim Abbas Zahraa H.Kareem Hussein Muhi Hariz Ahmed Alkhayyat 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2791-2814,共24页
Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discoveri... Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discovering correlations,patterns,and causal structures within datasets.In the healthcare domain,association rules offer valuable opportunities for building knowledge bases,enabling intelligent diagnoses,and extracting invaluable information rapidly.This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System(MLARMC-HDMS).The MLARMC-HDMS technique integrates classification and association rule mining(ARM)processes.Initially,the chimp optimization algorithm-based feature selection(COAFS)technique is employed within MLARMC-HDMS to select relevant attributes.Inspired by the foraging behavior of chimpanzees,the COA algorithm mimics their search strategy for food.Subsequently,the classification process utilizes stochastic gradient descent with a multilayer perceptron(SGD-MLP)model,while the Apriori algorithm determines attribute relationships.We propose a COA-based feature selection approach for medical data classification using machine learning techniques.This approach involves selecting pertinent features from medical datasets through COA and training machine learning models using the reduced feature set.We evaluate the performance of our approach on various medical datasets employing diverse machine learning classifiers.Experimental results demonstrate that our proposed approach surpasses alternative feature selection methods,achieving higher accuracy and precision rates in medical data classification tasks.The study showcases the effectiveness and efficiency of the COA-based feature selection approach in identifying relevant features,thereby enhancing the diagnosis and treatment of various diseases.To provide further validation,we conduct detailed experiments on a benchmark medical dataset,revealing the superiority of the MLARMCHDMS model over other methods,with a maximum accuracy of 99.75%.Therefore,this research contributes to the advancement of feature selection techniques in medical data classification and highlights the potential for improving healthcare outcomes through accurate and efficient data analysis.The presented MLARMC-HDMS framework and COA-based feature selection approach offer valuable insights for researchers and practitioners working in the field of healthcare data mining and machine learning. 展开更多
关键词 Association rule mining data classification healthcare data machine learning parameter tuning data mining feature selection MLARMC-HDMS COA stochastic gradient descent Apriori algorithm
下载PDF
Computational Intelligence Driven Secure Unmanned Aerial Vehicle Image Classification in Smart City Environment
9
作者 Firas Abedi Hayder M.A.Ghanimi +6 位作者 Abeer D.Algarni Naglaa F.Soliman walid el-shafai Ali Hashim Abbas Zahraa H.Kareem Hussein Muhi Hariz Ahmed Alkhayyat 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期3127-3144,共18页
Computational intelligence(CI)is a group of nature-simulated computationalmodels and processes for addressing difficult real-life problems.The CI is useful in the UAV domain as it produces efficient,precise,and rapid ... Computational intelligence(CI)is a group of nature-simulated computationalmodels and processes for addressing difficult real-life problems.The CI is useful in the UAV domain as it produces efficient,precise,and rapid solutions.Besides,unmanned aerial vehicles(UAV)developed a hot research topic in the smart city environment.Despite the benefits of UAVs,security remains a major challenging issue.In addition,deep learning(DL)enabled image classification is useful for several applications such as land cover classification,smart buildings,etc.This paper proposes novel meta-heuristics with a deep learning-driven secure UAV image classification(MDLS-UAVIC)model in a smart city environment.Themajor purpose of the MDLS-UAVIC algorithm is to securely encrypt the images and classify them into distinct class labels.The proposedMDLS-UAVIC model follows a two-stage process:encryption and image classification.The encryption technique for image encryption effectively encrypts the UAV images.Next,the image classification process involves anXception-based deep convolutional neural network for the feature extraction process.Finally,shuffled shepherd optimization(SSO)with a recurrent neural network(RNN)model is applied for UAV image classification,showing the novelty of the work.The experimental validation of the MDLS-UAVIC approach is tested utilizing a benchmark dataset,and the outcomes are examined in various measures.It achieved a high accuracy of 98%. 展开更多
关键词 Computational intelligence unmanned aerial vehicles deep learning metaheuristics smart city image encryption image classification
下载PDF
Statistical Time Series Forecasting Models for Pandemic Prediction
10
作者 Ahmed ElShafee walid el-shafai +2 位作者 Abeer D.Algarni Naglaa F.Soliman Moustafa H.Aly 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期349-374,共26页
COVID-19 has significantly impacted the growth prediction of a pandemic,and it is critical in determining how to battle and track the disease progression.In this case,COVID-19 data is a time-series dataset that can be... COVID-19 has significantly impacted the growth prediction of a pandemic,and it is critical in determining how to battle and track the disease progression.In this case,COVID-19 data is a time-series dataset that can be projected using different methodologies.Thus,this work aims to gauge the spread of the outbreak severity over time.Furthermore,data analytics and Machine Learning(ML)techniques are employed to gain a broader understanding of virus infections.We have simulated,adjusted,and fitted several statistical time-series forecasting models,linearML models,and nonlinear ML models.Examples of these models are Logistic Regression,Lasso,Ridge,ElasticNet,Huber Regressor,Lasso Lars,Passive Aggressive Regressor,K-Neighbors Regressor,Decision Tree Regressor,Extra Trees Regressor,Support Vector Regressions(SVR),AdaBoost Regressor,Random Forest Regressor,Bagging Regressor,AuoRegression,MovingAverage,Gradient Boosting Regressor,Autoregressive Moving Average(ARMA),Auto-Regressive Integrated Moving Averages(ARIMA),SimpleExpSmoothing,Exponential Smoothing,Holt-Winters,Simple Moving Average,Weighted Moving Average,Croston,and naive Bayes.Furthermore,our suggested methodology includes the development and evaluation of ensemble models built on top of the best-performing statistical and ML-based prediction methods.A third stage in the proposed system is to examine three different implementations to determine which model delivers the best performance.Then,this best method is used for future forecasts,and consequently,we can collect the most accurate and dependable predictions. 展开更多
关键词 Forecasting COVID-19 predictive models medical viruses mathematical model market research DISEASES
下载PDF
Analysis of BrainMRI: AI-Assisted Healthcare Framework for the Smart Cities
11
作者 walid el-shafai Randa Ali +3 位作者 Ahmed Sedik Taha El-Sayed Taha Mohammed Abd-Elnaby Fathi E.Abd El-Samie 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1843-1856,共14页
The use of intelligent machines to work and react like humans is vital in emerging smart cities.Computer-aided analysis of complex and huge MRI(Mag-netic Resonance Imaging)scans is very important in healthcare applica... The use of intelligent machines to work and react like humans is vital in emerging smart cities.Computer-aided analysis of complex and huge MRI(Mag-netic Resonance Imaging)scans is very important in healthcare applications.Among AI(Artificial Intelligence)driven healthcare applications,tumor detection is one of the contemporary researchfields that have become attractive to research-ers.There are several modalities of imaging performed on the brain for the pur-pose of tumor detection.This paper offers a deep learning approach for detecting brain tumors from MR(Magnetic Resonance)images based on changes in the division of the training and testing data and the structure of the CNN(Convolu-tional Neural Network)layers.The proposed approach is carried out on a brain tumor dataset from the National Centre of Image-Guided Therapy,including about 4700 MRI images of ten brain tumor cases with both normal and abnormal states.The dataset is divided into test,and train subsets with a ratio of the training set to the validation set of 70:30.The main contribution of this paper is introdu-cing an optimum deep learning structure of CNN layers.The simulation results are obtained for 50 epochs in the training phase.The simulation results reveal that the optimum CNN architecture consists of four layers. 展开更多
关键词 Healthcare smart cities clinical automation CNN machine learning brain tumor medical diagnosis
下载PDF
Dynamic S-Box Generation Using Novel Chaotic Map with Nonlinearity Tweaking
12
作者 Amjad Hussain Zahid Muhammad Junaid Arshad +2 位作者 Musheer Ahmad Naglaa F.Soliman walid el-shafai 《Computers, Materials & Continua》 SCIE EI 2023年第5期3011-3026,共16页
A substitution box(S-Box)is a crucial component of contemporary cryptosystems that provide data protection in block ciphers.At the moment,chaotic maps are being created and extensively used to generate these SBoxes as... A substitution box(S-Box)is a crucial component of contemporary cryptosystems that provide data protection in block ciphers.At the moment,chaotic maps are being created and extensively used to generate these SBoxes as a chaotic map assists in providing disorder and resistance to combat cryptanalytical attempts.In this paper,the construction of a dynamic S-Box using a cipher key is proposed using a novel chaotic map and an innovative tweaking approach.The projected chaotic map and the proposed tweak approach are presented for the first time and the use of parameters in their workingmakes both of these dynamic in nature.The tweak approach employs cubic polynomials while permuting the values of an initial S-Box to enhance its cryptographic fort.Values of the parameters are provided using the cipher key and a small variation in values of these parameters results in a completely different unique S-Box.Comparative analysis and exploration confirmed that the projected chaoticmap exhibits a significant amount of chaotic complexity.The security assessment in terms of bijectivity,nonlinearity,bits independence,strict avalanche,linear approximation probability,and differential probability criteria are utilized to critically investigate the effectiveness of the proposed S-Box against several assaults.The proposed S-Box’s cryptographic performance is comparable to those of recently projected S-Boxes for its adaption in real-world security applications.The comparative scrutiny pacifies the genuine potential of the proposed S-Box in terms of its applicability for data security. 展开更多
关键词 Substitution-box chaotic map data security tweaking
下载PDF
An Efficient Intrusion Detection Framework for Industrial Internet of Things Security
13
作者 Samah Alshathri Ayman El-Sayed +1 位作者 walid el-shafai Ezz El-Din Hemdan 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期819-834,共16页
Recently,the Internet of Things(IoT)has been used in various applications such as manufacturing,transportation,agriculture,and healthcare that can enhance efficiency and productivity via an intelligent management cons... Recently,the Internet of Things(IoT)has been used in various applications such as manufacturing,transportation,agriculture,and healthcare that can enhance efficiency and productivity via an intelligent management console remotely.With the increased use of Industrial IoT(IIoT)applications,the risk of brutal cyber-attacks also increased.This leads researchers worldwide to work on developing effective Intrusion Detection Systems(IDS)for IoT infrastructure against any malicious activities.Therefore,this paper provides effective IDS to detect and classify unpredicted and unpredictable severe attacks in contradiction to the IoT infrastructure.A comprehensive evaluation examined on a new available benchmark TON_IoT dataset is introduced.The data-driven IoT/IIoT dataset incorporates a label feature indicating classes of normal and attack-targeting IoT/IIoT applications.Correspondingly,this data involves IoT/IIoT services-based telemetry data that involves operating systems logs and IoT-based traffic networks collected from a realistic medium-scale IoT network.This is to classify and recognize the intrusion activity and provide the intrusion detection objectives in IoT environments in an efficient fashion.Therefore,several machine learning algorithms such as Logistic Regression(LR),Linear Discriminant Analysis(LDA),K-Nearest Neighbors(KNN),Gaussian Naive Bayes(NB),Classification and Regression Tree(CART),Random Forest(RF),and AdaBoost(AB)are used for the detection intent on thirteen different intrusion datasets.Several performance metrics like accuracy,precision,recall,and F1-score are used to estimate the proposed framework.The experimental results show that the CART surpasses the other algorithms with the highest accuracy values like 0.97,1.00,0.99,0.99,1.00,1.00,and 1.00 for effectively detecting the intrusion activities on the IoT/IIoT infrastructure on most of the employed datasets.In addition,the proposed work accomplishes high performance compared to other recent related works in terms of different security and detection evaluation parameters. 展开更多
关键词 ATTACKS intrusion detection machine learning deep learning industrial IoT TON_IoT dataset
下载PDF
An Immutable Framework for Smart Healthcare Using Blockchain Technology
14
作者 Faneela Muazzam A.Khan +3 位作者 Suliman A.Alsuhibany walid el-shafai Mujeeb Ur Rehman Jawad Ahmad 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期165-179,共15页
The advancements in sensing technologies,information processing,and communication schemes have revolutionized the healthcare sector.Electronic Healthcare Records(EHR)facilitate the patients,doctors,hospitals,and other... The advancements in sensing technologies,information processing,and communication schemes have revolutionized the healthcare sector.Electronic Healthcare Records(EHR)facilitate the patients,doctors,hospitals,and other stakeholders to maintain valuable data and medical records.The traditional EHRs are based on cloud-based architectures and are susceptible to multiple cyberattacks.A single attempt of a successful Denial of Service(DoS)attack can compromise the complete healthcare system.This article introduces a secure and immutable blockchain-based framework for the Internet of Medical Things(IoMT)to address the stated challenges.The proposed architecture is on the idea of a lightweight private blockchain-based network that facilitates the users and hospitals to perform multiple healthcare-related operations in a secure and trustworthy manner.The efficacy of the proposed framework is evaluated in the context of service execution time and throughput.The experimental outcomes indicate that the proposed design attained lower service execution time and higher throughput under different control parameters. 展开更多
关键词 Blockchain technology healthcare applications cybersecurity services IoMT DOS EHR
下载PDF
Efficient Hardware Design of a Secure Cancellable Biometric Cryptosystem
15
作者 Lamiaa A.Abou Elazm walid el-shafai +6 位作者 Sameh Ibrahim Mohamed G.Egila H.Shawkey Mohamed K.H.Elsaid Naglaa F.Soliman Hussah Nasser AlEisa Fathi E.Abd El-Samie 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期929-955,共27页
Biometric security is a growing trend,as it supports the authentication of persons using confidential biometric data.Most of the transmitted data in multi-media systems are susceptible to attacks,which affect the secur... Biometric security is a growing trend,as it supports the authentication of persons using confidential biometric data.Most of the transmitted data in multi-media systems are susceptible to attacks,which affect the security of these sys-tems.Biometric systems provide sufficient protection and privacy for users.The recently-introduced cancellable biometric recognition systems have not been investigated in the presence of different types of attacks.In addition,they have not been studied on different and large biometric datasets.Another point that deserves consideration is the hardware implementation of cancellable biometric recognition systems.This paper presents a suggested hybrid cancellable biometric recognition system based on a 3D chaotic cryptosystem.The rationale behind the utilization of the 3D chaotic cryptosystem is to guarantee strong encryption of biometric templates,and hence enhance the security and privacy of users.The suggested cryptosystem adds significant permutation and diffusion to the encrypted biometric templates.We introduce some sort of attack analysis in this paper to prove the robustness of the proposed cryptosystem against attacks.In addition,a Field Programmable Gate Array(FPGA)implementation of the pro-posed system is introduced.The obtained results with the proposed cryptosystem are compared with those of the traditional encryption schemes,such as Double Random Phase Encoding(DRPE)to reveal superiority,and hence high recogni-tion performance of the proposed cancellable biometric recognition system.The obtained results prove that the proposed cryptosystem enhances the security and leads to better efficiency of the cancellable biometric recognition system in the presence of different types of attacks. 展开更多
关键词 Information security cancellable biometric recognition systems CRYPTANALYSIS 3D chaotic map ENCRYPTION FPGA
下载PDF
Optical Ciphering Scheme for Cancellable Speaker Identification System
16
作者 walid el-shafai Marwa A.Elsayed +5 位作者 Mohsen A.Rashwan Moawad I.Dessouky Adel S.El-Fishawy Naglaa F.Soliman Amel A.Alhussan Fathi EAbd El-Samie 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期563-578,共16页
Most current security and authentication systems are based on personal biometrics.The security problem is a major issue in the field of biometric systems.This is due to the use in databases of the original biometrics.... Most current security and authentication systems are based on personal biometrics.The security problem is a major issue in the field of biometric systems.This is due to the use in databases of the original biometrics.Then biometrics will forever be lost if these databases are attacked.Protecting privacy is the most important goal of cancelable biometrics.In order to protect privacy,therefore,cancelable biometrics should be non-invertible in such a way that no information can be inverted from the cancelable biometric templates stored in personal identification/verification databases.One methodology to achieve non-invertibility is the employment of non-invertible transforms.This work suggests an encryption process for cancellable speaker identification using a hybrid encryption system.This system includes the 3D Jigsaw transforms and Fractional Fourier Transform(FrFT).The proposed scheme is compared with the optical Double Random Phase Encoding(DRPE)encryption process.The evaluation of simulation results of cancellable biometrics shows that the algorithm proposed is secure,authoritative,and feasible.The encryption and cancelability effects are good and reveal good performance.Also,it introduces recommended security and robustness levels for its utilization for achieving efficient cancellable biometrics systems. 展开更多
关键词 Cancellable biometrics jigsaw transform FrFT DRPE speaker identification
下载PDF
Securing Healthcare Data in IoMT Network Using Enhanced Chaos Based Substitution and Diffusion
17
作者 Musheer Ahmad Reem Ibrahim Alkanhel +3 位作者 Naglaa FSoliman Abeer D.Algarni Fathi E.Abd El-Samie walid el-shafai 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2361-2380,共20页
Patient privacy and data protection have been crucial concerns in Ehealthcare systems for many years.In modern-day applications,patient data usually holds clinical imagery,records,and other medical details.Lately,the ... Patient privacy and data protection have been crucial concerns in Ehealthcare systems for many years.In modern-day applications,patient data usually holds clinical imagery,records,and other medical details.Lately,the Internet of Medical Things(IoMT),equipped with cloud computing,has come out to be a beneficial paradigm in the healthcare field.However,the openness of networks and systems leads to security threats and illegal access.Therefore,reliable,fast,and robust security methods need to be developed to ensure the safe exchange of healthcare data generated from various image sensing and other IoMT-driven devices in the IoMT network.This paper presents an image protection scheme for healthcare applications to protect patients’medical image data exchanged in IoMT networks.The proposed security scheme depends on an enhanced 2D discrete chaotic map and allows dynamic substitution based on an optimized highly-nonlinear S-box and diffusion to gain an excellent security performance.The optimized S-box has an excellent nonlinearity score of 112.The new image protection scheme is efficient enough to exhibit correlation values less than 0.0022,entropy values higher than 7.999,and NPCR values around 99.6%.To reveal the efficacy of the scheme,several comparison studies are presented.These comparison studies reveal that the novel protection scheme is robust,efficient,and capable of securing healthcare imagery in IoMT systems. 展开更多
关键词 Secure communication healthcare data encryption Internet of Medical Things(IoMT) discrete chaotic map substitution box(S-box)
下载PDF
A Multi-Stage Security Solution for Medical Color Images in Healthcare Applications
18
作者 walid el-shafai Fatma Khallaf +2 位作者 El-Sayed M.El-Rabaie Fathi E.Abd El-Samie Iman Almomani 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3599-3618,共20页
This paper presents a robust multi-stage security solution based on fusion,encryption,and watermarking processes to transmit color healthcare images,efficiently.The presented solution depends on the features of discre... This paper presents a robust multi-stage security solution based on fusion,encryption,and watermarking processes to transmit color healthcare images,efficiently.The presented solution depends on the features of discrete cosine transform(DCT),lifting wavelet transform(LWT),and singular value decomposition(SVD).The primary objective of this proposed solution is to ensure robustness for the color medical watermarked images against transmission attacks.During watermark embedding,the host color medical image is transformed into four sub-bands by employing three stages of LWT.The resulting low-frequency sub-band is then transformed by employing three stages of DCT followed by SVD operation.Furthermore,a fusion process is used for combining different watermarks into a single watermark image.This single fused image is then ciphered using Deoxyribose Nucleic Acid(DNA)encryption to strengthen the security.Then,the DNA-ciphered fused watermark is embedded in the host medical image by applying the suggested watermarking technique to obtain the watermarked image.The main contribution of this work is embedding multiple watermarks to prevent identity theft.In the presence of different multimedia attacks,several simulation tests on different colormedical images have been performed.The results prove that the proposed security solution achieves a decent imperceptibility quality with high Peak Signal-to-Noise Ratio(PSNR)values and high correlation between the extracted and original watermark images.Moreover,the watermark image extraction process succeeds in achieving high efficiency in the presence of attacks compared with related works. 展开更多
关键词 Medical images DNA encryption digital image watermarking FUSION healthcare applications
下载PDF
Hyperspectral Images-Based Crop Classification Scheme for Agricultural Remote Sensing
19
作者 Imran Ali Zohaib Mushtaq +3 位作者 Saad Arif Abeer D.Algarni Naglaa F.Soliman walid el-shafai 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期303-319,共17页
Hyperspectral imaging is gaining a significant role in agricultural remote sensing applications.Its data unit is the hyperspectral cube which holds spatial information in two dimensions while spectral band information... Hyperspectral imaging is gaining a significant role in agricultural remote sensing applications.Its data unit is the hyperspectral cube which holds spatial information in two dimensions while spectral band information of each pixel in the third dimension.The classification accuracy of hyperspectral images(HSI)increases significantly by employing both spatial and spectral features.For this work,the data was acquired using an airborne hyperspectral imager system which collected HSI in the visible and near-infrared(VNIR)range of 400 to 1000 nm wavelength within 180 spectral bands.The dataset is collected for nine different crops on agricultural land with a spectral resolution of 3.3 nm wavelength for each pixel.The data was cleaned from geometric distortions and stored with the class labels and annotations of global localization using the inertial navigation system.In this study,a unique pixel-based approach was designed to improve the crops'classification accuracy by using the edge-preserving features(EPF)and principal component analysis(PCA)in conjunction.The preliminary processing generated the high-dimensional EPF stack by applying the edge-preserving filters on acquired HSI.In the second step,this high dimensional stack was treated with the PCA for dimensionality reduction without losing significant spectral information.The resultant feature space(PCA-EPF)demonstrated enhanced class separability for improved crop classification with reduced dimensionality and computational cost.The support vector machines classifier was employed for multiclass classification of target crops using PCA-EPF.The classification performance evaluation was measured in terms of individual class accuracy,overall accuracy,average accuracy,and Cohen kappa factor.The proposed scheme achieved greater than 90%results for all the performance evaluation metrics.The PCA-EPF proved to be an effective attribute for crop classification using hyperspectral imaging in the VNIR range.The proposed scheme is well-suited for practical applications of crops and landfill estimations using agricultural remote sensing methods. 展开更多
关键词 Hyperspectral imaging visible and near-infrared edge preserving feature dimensionality reduction crop classification
下载PDF
Proposed Privacy Preservation Technique for Color Medical Images
20
作者 walid el-shafai Hayam A.Abd El-Hameed +4 位作者 Noha A.El-Hag Ashraf A.M.Khalaf Naglaa F.Soliman Hussah Nasser AlEisa Fathi E.Abd El-Samie 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期719-732,共14页
Nowadays,the security of images or information is very important.This paper introduces a proposed hybrid watermarking and encryption technique for increasing medical image security.First,the secret medical image is en... Nowadays,the security of images or information is very important.This paper introduces a proposed hybrid watermarking and encryption technique for increasing medical image security.First,the secret medical image is encrypted using Advanced Encryption Standard(AES)algorithm.Then,the secret report of the patient is embedded into the encrypted secret medical image with the Least Significant Bit(LSB)watermarking algorithm.After that,the encrypted secret medical image with the secret report is concealed in a cover medical image,using Kekre’s Median Codebook Generation(KMCG)algorithm.Afterwards,the stego-image obtained is split into 16 parts.Finally,it is sent to the receiver.We adopt this strategy to send the secret medical image and report over a network securely.The proposed technique is assessed with different encryption quality metrics including Peak Signal-to-Noise Ratio(PSNR),Correlation Coefficient(Cr),Fea-ture Similarity Index Metric(FSIM),and Structural Similarity Index Metric(SSIM).Histogram estimation is used to confirm the matching between the secret medical image before and after transmission.Simulation results demonstrate that the proposed technique achieves good performance with high quality of the received medical image and clear image details in a very short processing time. 展开更多
关键词 LSB steganography AES algorithm KMCG algorithm
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部