Numerous researches were reviewed and interpreted to depict a comprehensive illustration of activated carbon and its behavior towards oxidation.Activated carbon as one of the most important adsorbents is tried to be d...Numerous researches were reviewed and interpreted to depict a comprehensive illustration of activated carbon and its behavior towards oxidation.Activated carbon as one of the most important adsorbents is tried to be described in this review paper by terms of its"Textural Characteristics"and"Surface Chemistry".These two terms,coupled with each other,are responsible for behavior of activated carbon in adsorption processes and in catalytic applications.Although as-prepared activated carbons are usually nonselective and their surfaces suffer from lack of enough reactive groups,their different aspects may be improved and developed by diverse types of modifications.Oxidation is one of the most conventional modifications used for activated carbons.It may be used as a final modification or as a pre-modification followed by further treatment.In this paper,methods of oxidation of activated carbon and other graphene-layer carbon materials are introduced and wet oxidation as an extensively-used category of oxidation is discussed in more detail.展开更多
The use of silver metal for hydrodeoxygenation(HDO) applications is scarce and different studies have indicated of its varying HDO activity. Several computational studies have reported of silver having almost zero tur...The use of silver metal for hydrodeoxygenation(HDO) applications is scarce and different studies have indicated of its varying HDO activity. Several computational studies have reported of silver having almost zero turnover frequency for HDO owing to its high C\\O bond breaking energy barrier and low carbon and oxygen binding energies.Herein this work, titania supported silver catalysts were synthesized and firstly used to examine its phenol HDO activity via experimental reaction runs. BET, XRD, FESEM, TEM, EDX, ICP–OES, Pyridine-FTIR, NH_3-TPD and H_2-TPD analyses were done to investigate its physicochemical properties. Phenomena of hydrogen spillover and metal–acid site synergy were examined in this study. With the aid of TiO_2 reducible support, hydrogen spillover and metal–acid site interactions were observed to a certain extent but were not as superior as other Pt, Pd, Ni-based catalysts used in other HDO studies. The experimental findings showed that Ag/TiO_2 catalyst has mediocre phenol conversion but high benzene selectivity which confirms the explanation from other computational studies.展开更多
Hierarchical nanoporous HY zeolites were synthesized from acid-activated kaolin. The hierarchical factor (HF) was maximized by varying the aging and crystallization time. This was achieved by maximizing the external...Hierarchical nanoporous HY zeolites were synthesized from acid-activated kaolin. The hierarchical factor (HF) was maximized by varying the aging and crystallization time. This was achieved by maximizing the external surface area without greatly reducing the micropore volume. The resulting products were characterized using X-ray diffraction (XRD), X-ray fluorescence, N2 adsorption, and NH3 temperature-programmed desorption. The nanoporous HY zeolite with the highest HF was obtained by aging for 48 h and a crystallization time of 24 h. The acidiW and crystallinity varied depending on the operating parameters. Incorporation of an appropriate amount of NaCI was also vital in maximizing the HF, crystallinity, and acidity. The sample crystallinities were determined by comparing their XRD peak intensities with those of a conventional Y zeolite. The results show that optimizing this process could lead to a widely acceptable commercial route for FIY zeolite production.展开更多
文摘Numerous researches were reviewed and interpreted to depict a comprehensive illustration of activated carbon and its behavior towards oxidation.Activated carbon as one of the most important adsorbents is tried to be described in this review paper by terms of its"Textural Characteristics"and"Surface Chemistry".These two terms,coupled with each other,are responsible for behavior of activated carbon in adsorption processes and in catalytic applications.Although as-prepared activated carbons are usually nonselective and their surfaces suffer from lack of enough reactive groups,their different aspects may be improved and developed by diverse types of modifications.Oxidation is one of the most conventional modifications used for activated carbons.It may be used as a final modification or as a pre-modification followed by further treatment.In this paper,methods of oxidation of activated carbon and other graphene-layer carbon materials are introduced and wet oxidation as an extensively-used category of oxidation is discussed in more detail.
基金GSP-MOHE,University of Malaya for fully funding this study through the project number "MO008-2015"Ministry of Higher Education of Malaysia (MOHE) for MyBrain15 (MyPhD) programIPPP for project "PG081-2016A"
文摘The use of silver metal for hydrodeoxygenation(HDO) applications is scarce and different studies have indicated of its varying HDO activity. Several computational studies have reported of silver having almost zero turnover frequency for HDO owing to its high C\\O bond breaking energy barrier and low carbon and oxygen binding energies.Herein this work, titania supported silver catalysts were synthesized and firstly used to examine its phenol HDO activity via experimental reaction runs. BET, XRD, FESEM, TEM, EDX, ICP–OES, Pyridine-FTIR, NH_3-TPD and H_2-TPD analyses were done to investigate its physicochemical properties. Phenomena of hydrogen spillover and metal–acid site synergy were examined in this study. With the aid of TiO_2 reducible support, hydrogen spillover and metal–acid site interactions were observed to a certain extent but were not as superior as other Pt, Pd, Ni-based catalysts used in other HDO studies. The experimental findings showed that Ag/TiO_2 catalyst has mediocre phenol conversion but high benzene selectivity which confirms the explanation from other computational studies.
基金funded by Fundamental Research Grant Scheme,University of Malaya through the project number of FP031-2013A
文摘Hierarchical nanoporous HY zeolites were synthesized from acid-activated kaolin. The hierarchical factor (HF) was maximized by varying the aging and crystallization time. This was achieved by maximizing the external surface area without greatly reducing the micropore volume. The resulting products were characterized using X-ray diffraction (XRD), X-ray fluorescence, N2 adsorption, and NH3 temperature-programmed desorption. The nanoporous HY zeolite with the highest HF was obtained by aging for 48 h and a crystallization time of 24 h. The acidiW and crystallinity varied depending on the operating parameters. Incorporation of an appropriate amount of NaCI was also vital in maximizing the HF, crystallinity, and acidity. The sample crystallinities were determined by comparing their XRD peak intensities with those of a conventional Y zeolite. The results show that optimizing this process could lead to a widely acceptable commercial route for FIY zeolite production.