期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Insights into the nitride-regulated processes at the electrolyte/electrode interface in quasi-solid-state lithium metal batteries 被引量:1
1
作者 Jing Wan wan-ping chen +5 位作者 Gui-Xian Liu Yang Shi Sen Xin Yu-Guo Guo Rui Wen Li-Jun Wan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期780-786,共7页
Gel polymer electrolytes(GPEs)are one of the promising candidates for high-energy-density quasi-solid-state lithium metal batteries(QSSLMBs),for their high ionic conductivity and excellent interfacial compatibility.Th... Gel polymer electrolytes(GPEs)are one of the promising candidates for high-energy-density quasi-solid-state lithium metal batteries(QSSLMBs),for their high ionic conductivity and excellent interfacial compatibility.The comprehension of dynamic evolution and structure-reactivity correlation at the GPE/Li interface becomes significant.Here,in situ electrochemical atomic force microscopy(EC-AFM)provides insights into the LiNO_(3)-regulated micromechanism of the Li plating/stripping processes upon cycles in GPE-based LMBs at nanoscale.The additive LiNO_(3)induces the formation of amorphous nitride SEI film and facilitates Li^(+) ion diffusion.It stabilizes a compatible interface and regulates the Li nucleation/growth at steady kinetics.The deposited Li is in the shape of chunks and tightly compact.The Li dissolution shows favorable reversibility,which guarantees the cycling performance of LMBs.In situ AFM monitoring provides a deep understanding into the dynamic evolution of Li deposition/dissolution and the interphasial properties of tunable SEI film,regulating the rational design of electrolyte and optimizing interfacial establishment for GPE-based QSSLMBs. 展开更多
关键词 In-situ electrochemical atomic force microscopy Gel polymer electrolyte Solid electrolyte interphase Lithium deposition/dissolution Quasi-solid-state lithium metal batteries
下载PDF
Self-supported hard carbon anode from fungus-treated basswood towards sodium-ion batteries 被引量:1
2
作者 Ping Wang Yu-Jie Guo +5 位作者 wan-ping chen Hui Duan Huan Ye Hu-Rong Yao Ya-Xia Yin Fei-Fei Cao 《Nano Research》 SCIE EI CSCD 2023年第3期3832-3838,共7页
Hard carbon derived from biomass is regarded as a promising anode material for sodium-ion batteries(SIBs)because of its low operating potential,high capacity,resource availability,and low cost.However,scientific and t... Hard carbon derived from biomass is regarded as a promising anode material for sodium-ion batteries(SIBs)because of its low operating potential,high capacity,resource availability,and low cost.However,scientific and technological challenges still exist to prepare hard carbon with a high initial Coulombic efficiency(ICE),an excellent rate capability,and good cycling stability.In this work,we report a self-supported hard carbon electrode from fungus-pretreated basswood with an improved graphitization degree and a low tortuosity.Compared with the hard carbon derived from basswood,the hard carbon electrode from fungus-pretreated basswood has an improved rate capability of 242.3 mAh·g^(−1)at 200 mA·g^(−1)and cycling stability with 93.9%of its capacity retention after 200 cycles at 40 mA·g^(−1),as well as the increased ICE from 84.3%to 88.2%.Additionally,ex-situ X-ray diffraction indicates that Na+adsorption caused the sloping capacity,whereas Na+intercalation between interlayer spacing corresponded to the low potential plateau capacity.This work provides a new perspective for the preparation of high-performance hard carbon and gains the in-depth understanding of Na storage mechanism. 展开更多
关键词 sodium-ion battery ANODE hard carbon fungus-pretreated basswood
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部