The influence of the refilled gas pressure on the glass forming behaviour of one of the best ternary glass forming alloys Zr50Cu40Al10 was studied for the melt spinning process. The amorphicity of as-quenched ribbons ...The influence of the refilled gas pressure on the glass forming behaviour of one of the best ternary glass forming alloys Zr50Cu40Al10 was studied for the melt spinning process. The amorphicity of as-quenched ribbons was characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The refilled chamber atmospheric pressure is crucial to the cooling rate of melt spinning. At high vacuum, at pressure less than 0.0001 atm, fully crystalline fragments are obtained. Monolithic amorphous ribbons were only obtained at a gas pressure of 0.1 atm or higher. The extended contact length between thecribbons and the copper wheel contributes to the high cooling rate of melt spinning. Higher chamber gas pressure leads to more turbulence of liquid metal beneath the nozzle; therefore, lower pressure is preferable at practical melt spinning processes once glass forming conditions are fulfilled.展开更多
In this work,the electrochemical behaviors of SAM2X5 Fe-based amorphous alloy coating and hard chromium coating were comparatively studied in 3.5 wt% NaCl solution.In comparison with the hard chromium coating,the SAM2...In this work,the electrochemical behaviors of SAM2X5 Fe-based amorphous alloy coating and hard chromium coating were comparatively studied in 3.5 wt% NaCl solution.In comparison with the hard chromium coating,the SAM2X5 coating exhibited a wider and stable passive region with lower passive current density in the potentiodynamic polarization and showed a considerably lower current density at different anodic potentials in the potentiostatic polarization.In order to understand the passivation mechanism of the Fe-based amorphous coating,the components of the passive films formed at various polarization potentials were examined by X-ray photoelectron spectroscopy.The synergistic effect of Mo,W,Mn and Cr in the passive films was systemically analyzed.It has been revealed that Mo and W facilitate the formation of compact and stable Cr2O3 passive film at lower potentials,and the substantial enrichment of Mn in the passive film enhances the passivation ability at relatively higher potentials.The deep understanding of the passivation characteristics in multicomponent alloy systems could provide a guide for the design of corrosion-resistant amorphous alloy coatings for engineering applications.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51171119)the Natural Science Foundation of Liaoning Province(No.2013020084)+1 种基金Higher Education Youth Talent Scholar Fostering Project of Liaoning Province(No.LJQ2014015)Project of Shenyang Bureau of Science and Technological Development(No.1091177-1-00)
文摘The influence of the refilled gas pressure on the glass forming behaviour of one of the best ternary glass forming alloys Zr50Cu40Al10 was studied for the melt spinning process. The amorphicity of as-quenched ribbons was characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The refilled chamber atmospheric pressure is crucial to the cooling rate of melt spinning. At high vacuum, at pressure less than 0.0001 atm, fully crystalline fragments are obtained. Monolithic amorphous ribbons were only obtained at a gas pressure of 0.1 atm or higher. The extended contact length between thecribbons and the copper wheel contributes to the high cooling rate of melt spinning. Higher chamber gas pressure leads to more turbulence of liquid metal beneath the nozzle; therefore, lower pressure is preferable at practical melt spinning processes once glass forming conditions are fulfilled.
基金supported by the National Natural Science Foundation of China (Nos. 51471166, 51131006 and 51171119)the College Youth Scholar Fostering Program of Liaoning Province (No. LJQ2014015)
文摘In this work,the electrochemical behaviors of SAM2X5 Fe-based amorphous alloy coating and hard chromium coating were comparatively studied in 3.5 wt% NaCl solution.In comparison with the hard chromium coating,the SAM2X5 coating exhibited a wider and stable passive region with lower passive current density in the potentiodynamic polarization and showed a considerably lower current density at different anodic potentials in the potentiostatic polarization.In order to understand the passivation mechanism of the Fe-based amorphous coating,the components of the passive films formed at various polarization potentials were examined by X-ray photoelectron spectroscopy.The synergistic effect of Mo,W,Mn and Cr in the passive films was systemically analyzed.It has been revealed that Mo and W facilitate the formation of compact and stable Cr2O3 passive film at lower potentials,and the substantial enrichment of Mn in the passive film enhances the passivation ability at relatively higher potentials.The deep understanding of the passivation characteristics in multicomponent alloy systems could provide a guide for the design of corrosion-resistant amorphous alloy coatings for engineering applications.