The Dunhuang Mogao Grottoes in China was designated as a world heritage site by UNESCO in 1987 and is famous for its cultural relics. Water is the most active factor that harms the relics in the caves as it damages th...The Dunhuang Mogao Grottoes in China was designated as a world heritage site by UNESCO in 1987 and is famous for its cultural relics. Water is the most active factor that harms the relics in the caves as it damages the grotto murals and painted sculptures. Thus, determining the water sources and driving forces of water movement is a key issue for protecting these cultural relics. These issues have troubled relics protectors for a long time. In this study, the authors chose a representative cave in the Mogao Grottoes and, by completely sealing the cave to make a closed system, measured the water vapor from the surrounding rock. This was accomplished by installing a condensation-dehumidification temperature-humidity control system for the collection of water vapor. The results show that there is continuous evaporation from the deep surrounding rock into the cave. The daily evaporation capacity is determined to be 1.02 g/(d·m2). The water sources and driving forces of water movement were further analyzed according to the character of the water evaporation and by monitoring the temperature and humidity of the surrounding rock. It was found that the water vapor in the cave derives from phreatic water. Moreover, the yearly fluctuation of temperature in the surrounding rock and geothermal forces are the basic powers responsible for driving phreatic evaporation. Under the action of the yearly temperature fluctuations, decomposition and combination of bound water acts as a "pump" that drives phreatic water migration and evaporation. When the temperature rises, bound water decomposes and evaporates; and when it falls, the rock absorbs moisture. This causes the phreatic water to move from deep regions to shallow ones. Determining the source and dynamic foundation of the water provides a firm scientific basis for protecting the valuable cultural relics in the caves.展开更多
Under an extremely arid condition,a PVC greenhouse was built on the top of Mogao Grottoes in gobi area.The results of 235-day constant extraction of condensed water on the greenhouse film and soil water content showed...Under an extremely arid condition,a PVC greenhouse was built on the top of Mogao Grottoes in gobi area.The results of 235-day constant extraction of condensed water on the greenhouse film and soil water content showed that 2.1 g/(m2·d) groundwater moved up and exported into the soil,and a phreatic water evaporation existed in the extreme dry area where the groundwater is buried deeper than 200 m.After a prolonged export,the soil water content in the greenhouse was not lower but obviously higher than the original control ones.According to the monitored parameters including relative humidity and absolute humidity of soil,and temperature outside and inside the greenhouse,it was found that there is the available condition and mechanism for the upward movement of groundwater,and also it can be sure that the exported water was not from the soil and atmosphere outside the greenhouse.Phreatic water,an important source for soil water,interacts with atmosphere moisture via soil respiration.Soil salinity also has important effects on soil water movement and spatial-temporal heterogeneity.The extremely dry climate,terrestrial heat and change of upper soil temperature are the fundamental driving forces of water transportation and phreatic water evaporation in the Groundwater-Soil-Plant-Atmosphere Continuum(GSPAC) system.展开更多
A V-shaped nylon net fence installed in 1990 on top of the Mogao Grottoes is shown to be effectively resisting aeolian sand damage to the grottoes. The structure guides and causes deposition of sand from westerly wind...A V-shaped nylon net fence installed in 1990 on top of the Mogao Grottoes is shown to be effectively resisting aeolian sand damage to the grottoes. The structure guides and causes deposition of sand from westerly wind (the primary hard wind), but to some extent hinders the inverse function of easterly wind carrying sand away from the grottoes toward Mount Mingsha. The gobi side by the fence experiences higher wind speed, so that on which are easily formed undercutting pits, and the deposited sands on it generally form double-peak structures due to abundant sand sources. If the earth surface characteristics in gobi areas by both sides of the fence are quite varied, the erosion and deposition features of the accumulating sand section are similar in different seasons; however, if the earth surface characteristics are similar, the features become irregular in different seasons. Sand depositions with long slope feet are formed along the south and north sides of V-shaped nylon net fence. Disrupted by strong westerly wind and northwesterly wind, sand accumulations by north of the fence are in form of single peaks. Although the operation duration of the V-shaped nylon net fence has exceeded its design life (10 years), our observations indicate that it is still effective in reducing wind-driven sand damages to the Mogao Grottoes, so it should not be withdrawn.展开更多
In this study,a systematic survey of cultural airborne fungi was carried out in the occurrence environments of wall paintings that are preserved in the Tiantishan Grottoes and the Western Xia Museum,China.A bio-aeroso...In this study,a systematic survey of cultural airborne fungi was carried out in the occurrence environments of wall paintings that are preserved in the Tiantishan Grottoes and the Western Xia Museum,China.A bio-aerosol sampler was used for sampling in four seasons in 2016.Culture-dependent and-independent methods were taken to acquire airborne fungal concentration and purified strains;by the extraction of genomic DNA,amplification of fungal ITS rRNA gene region,sequencing,and phylogenetic analysis,thereafter the fungal community composition and distribution characteristics of different study sites were clarified.We disclosure the main environmental factors which may be responsible for dynamic changes of airborne fungi at the sampling sites.The concentration of cultural airborne fungi was in a range from 13 to 1,576 CFU/m^(3),no significant difference between the two sites at the Tiantishan Grottoes,with obvious characteristics of seasonal variation,in winter and spring were higher than in summer and autumn.Also,there was a significant difference in fungal concentration between the inside and outside of the Western Xia Museum,the outside of the museum was far more than the inside of the museum in the four seasons,particularly in the winter.Eight fungal genera were detected,including Cladosporium,Penicillium,Alternaria,and Filobasidium as the dominant groups.The airborne fungal community structures of the Tiantishan Grottoes show a distinct characteristic of seasonal variation and spatial distribution.Relative humidity,temperature and seasonal rainfall influence airborne fungal distribution.Some of the isolated strains have the potential to cause biodeterioration of ancient wall paintings.This study provides supporting information for the pre-warning conservation of cultural relics that are preserved at local sites and inside museums.展开更多
基金the National Natural Science Foundation of China (41363009)the Gansu Province Science and Technology Plan (1308RJZF290)a project of the Dunhuang Academy (201306)
文摘The Dunhuang Mogao Grottoes in China was designated as a world heritage site by UNESCO in 1987 and is famous for its cultural relics. Water is the most active factor that harms the relics in the caves as it damages the grotto murals and painted sculptures. Thus, determining the water sources and driving forces of water movement is a key issue for protecting these cultural relics. These issues have troubled relics protectors for a long time. In this study, the authors chose a representative cave in the Mogao Grottoes and, by completely sealing the cave to make a closed system, measured the water vapor from the surrounding rock. This was accomplished by installing a condensation-dehumidification temperature-humidity control system for the collection of water vapor. The results show that there is continuous evaporation from the deep surrounding rock into the cave. The daily evaporation capacity is determined to be 1.02 g/(d·m2). The water sources and driving forces of water movement were further analyzed according to the character of the water evaporation and by monitoring the temperature and humidity of the surrounding rock. It was found that the water vapor in the cave derives from phreatic water. Moreover, the yearly fluctuation of temperature in the surrounding rock and geothermal forces are the basic powers responsible for driving phreatic evaporation. Under the action of the yearly temperature fluctuations, decomposition and combination of bound water acts as a "pump" that drives phreatic water migration and evaporation. When the temperature rises, bound water decomposes and evaporates; and when it falls, the rock absorbs moisture. This causes the phreatic water to move from deep regions to shallow ones. Determining the source and dynamic foundation of the water provides a firm scientific basis for protecting the valuable cultural relics in the caves.
基金the National Natural Science Foundation of China (40940005)
文摘Under an extremely arid condition,a PVC greenhouse was built on the top of Mogao Grottoes in gobi area.The results of 235-day constant extraction of condensed water on the greenhouse film and soil water content showed that 2.1 g/(m2·d) groundwater moved up and exported into the soil,and a phreatic water evaporation existed in the extreme dry area where the groundwater is buried deeper than 200 m.After a prolonged export,the soil water content in the greenhouse was not lower but obviously higher than the original control ones.According to the monitored parameters including relative humidity and absolute humidity of soil,and temperature outside and inside the greenhouse,it was found that there is the available condition and mechanism for the upward movement of groundwater,and also it can be sure that the exported water was not from the soil and atmosphere outside the greenhouse.Phreatic water,an important source for soil water,interacts with atmosphere moisture via soil respiration.Soil salinity also has important effects on soil water movement and spatial-temporal heterogeneity.The extremely dry climate,terrestrial heat and change of upper soil temperature are the fundamental driving forces of water transportation and phreatic water evaporation in the Groundwater-Soil-Plant-Atmosphere Continuum(GSPAC) system.
基金supported jointly by the National Science and Technology Support Program (2012BAC08B07)the Natural Science Foundation of China (Nos. 2009BAC54B01-1 and 40930741)the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-313)
文摘A V-shaped nylon net fence installed in 1990 on top of the Mogao Grottoes is shown to be effectively resisting aeolian sand damage to the grottoes. The structure guides and causes deposition of sand from westerly wind (the primary hard wind), but to some extent hinders the inverse function of easterly wind carrying sand away from the grottoes toward Mount Mingsha. The gobi side by the fence experiences higher wind speed, so that on which are easily formed undercutting pits, and the deposited sands on it generally form double-peak structures due to abundant sand sources. If the earth surface characteristics in gobi areas by both sides of the fence are quite varied, the erosion and deposition features of the accumulating sand section are similar in different seasons; however, if the earth surface characteristics are similar, the features become irregular in different seasons. Sand depositions with long slope feet are formed along the south and north sides of V-shaped nylon net fence. Disrupted by strong westerly wind and northwesterly wind, sand accumulations by north of the fence are in form of single peaks. Although the operation duration of the V-shaped nylon net fence has exceeded its design life (10 years), our observations indicate that it is still effective in reducing wind-driven sand damages to the Mogao Grottoes, so it should not be withdrawn.
基金This study was supported by the National Natural Science Foundation of China(Nos.32060258,32060277)Science and Technology Plan of Gansu Province(Nos.20YF8WF016+1 种基金18JR3RA004)the"Light of West China"Program of the Chinese Academy of Sciences and Project of Gansu Cultural Relics Bureau(GWJ202011).
文摘In this study,a systematic survey of cultural airborne fungi was carried out in the occurrence environments of wall paintings that are preserved in the Tiantishan Grottoes and the Western Xia Museum,China.A bio-aerosol sampler was used for sampling in four seasons in 2016.Culture-dependent and-independent methods were taken to acquire airborne fungal concentration and purified strains;by the extraction of genomic DNA,amplification of fungal ITS rRNA gene region,sequencing,and phylogenetic analysis,thereafter the fungal community composition and distribution characteristics of different study sites were clarified.We disclosure the main environmental factors which may be responsible for dynamic changes of airborne fungi at the sampling sites.The concentration of cultural airborne fungi was in a range from 13 to 1,576 CFU/m^(3),no significant difference between the two sites at the Tiantishan Grottoes,with obvious characteristics of seasonal variation,in winter and spring were higher than in summer and autumn.Also,there was a significant difference in fungal concentration between the inside and outside of the Western Xia Museum,the outside of the museum was far more than the inside of the museum in the four seasons,particularly in the winter.Eight fungal genera were detected,including Cladosporium,Penicillium,Alternaria,and Filobasidium as the dominant groups.The airborne fungal community structures of the Tiantishan Grottoes show a distinct characteristic of seasonal variation and spatial distribution.Relative humidity,temperature and seasonal rainfall influence airborne fungal distribution.Some of the isolated strains have the potential to cause biodeterioration of ancient wall paintings.This study provides supporting information for the pre-warning conservation of cultural relics that are preserved at local sites and inside museums.