The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in ...The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in source localization to reduce the errors of the observer positions and improve the accuracy of the source localization. The relative distance measurements of the two coordinative observers are used for the linear minimum mean square error (LMMSE) estimator. The results of computer si-mulations prove the feasibility and effectiveness of the proposed method. With the general estimation errors of observers' positions, the MSE of the source localization with self-location calibration, which is significantly lower than that without self-location calibra-tion, is approximating to the Cramer-Rao lower bound (CRLB).展开更多
In this paper,we consider the double-satellite localization under the earth ellipsoid model of the Wideband Geodetic System(WGS-84)using the Time Difference of Arrival(TDOA)and the Angle-of-Arrival(AOA).Several closed...In this paper,we consider the double-satellite localization under the earth ellipsoid model of the Wideband Geodetic System(WGS-84)using the Time Difference of Arrival(TDOA)and the Angle-of-Arrival(AOA).Several closed-form solution algorithms via the pseudolinearization of the measurement equations are presented to efficiently estimate the location.These algorithms include the Weighted Least Squares(WLS),the Constrained Total Least Squares(CTLS),and the Taylor-Series Iteration(TSI).Performance comparison of the proposed methods with the Cramér-Rao Lower Bound(CRLB)in the simulation is shown to demonstrate that the proposed algorithms are feasible and have stable performance.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(ZYGX2009J016)
文摘The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in source localization to reduce the errors of the observer positions and improve the accuracy of the source localization. The relative distance measurements of the two coordinative observers are used for the linear minimum mean square error (LMMSE) estimator. The results of computer si-mulations prove the feasibility and effectiveness of the proposed method. With the general estimation errors of observers' positions, the MSE of the source localization with self-location calibration, which is significantly lower than that without self-location calibra-tion, is approximating to the Cramer-Rao lower bound (CRLB).
基金supported by Meteorological information and Signal Processing Key Laboratory of Sichuan Higher Education Institutes of Chengdu University of Information Technology,China(No.QXXCSYS201702)
文摘In this paper,we consider the double-satellite localization under the earth ellipsoid model of the Wideband Geodetic System(WGS-84)using the Time Difference of Arrival(TDOA)and the Angle-of-Arrival(AOA).Several closed-form solution algorithms via the pseudolinearization of the measurement equations are presented to efficiently estimate the location.These algorithms include the Weighted Least Squares(WLS),the Constrained Total Least Squares(CTLS),and the Taylor-Series Iteration(TSI).Performance comparison of the proposed methods with the Cramér-Rao Lower Bound(CRLB)in the simulation is shown to demonstrate that the proposed algorithms are feasible and have stable performance.