In this paper, we consider the empirical likelihood inference for the jump-diffusion model. We construct the confidence intervals based on the empirical likelihood for the infinitesimal moments in the jump-diffusion m...In this paper, we consider the empirical likelihood inference for the jump-diffusion model. We construct the confidence intervals based on the empirical likelihood for the infinitesimal moments in the jump-diffusion models. They are better than the confidence intervals which are based on the asymptotic normality of point estimates.展开更多
In this paper,we study the nonparametric estimation of the second infinitesimal moment by using the reweighted Nadaraya-Watson (RNW) approach of the underlying jump diffusion model.We establish strong consistency and ...In this paper,we study the nonparametric estimation of the second infinitesimal moment by using the reweighted Nadaraya-Watson (RNW) approach of the underlying jump diffusion model.We establish strong consistency and asymptotic normality for the estimate of the second infinitesimal moment of continuous time models using the reweighted Nadaraya-Watson estimator to the true function.展开更多
We study smoothed quantile estimator for a class of stationary processes. We obtain the convergency rates and the Bahadur representation, as well as the asymptotic normality for this estimator by the method of m-depen...We study smoothed quantile estimator for a class of stationary processes. We obtain the convergency rates and the Bahadur representation, as well as the asymptotic normality for this estimator by the method of m-dependent approximation. Our results can be used in the study of the estimation of value-at-risk(Va R) and applied to many time series which have important applications in econometrics.展开更多
基金supported by National Natural Science Foundation of China(Grant No. 10771095)Natural Science Foundation of Jiangsu Province of China
文摘In this paper, we consider the empirical likelihood inference for the jump-diffusion model. We construct the confidence intervals based on the empirical likelihood for the infinitesimal moments in the jump-diffusion models. They are better than the confidence intervals which are based on the asymptotic normality of point estimates.
基金supported by National Natural Science Foundation of China (Grant Nos.10871177,11071213)Research Fund for the Doctor Program of Higher Education of China (Grant No.20090101110020)
文摘In this paper,we study the nonparametric estimation of the second infinitesimal moment by using the reweighted Nadaraya-Watson (RNW) approach of the underlying jump diffusion model.We establish strong consistency and asymptotic normality for the estimate of the second infinitesimal moment of continuous time models using the reweighted Nadaraya-Watson estimator to the true function.
文摘We study smoothed quantile estimator for a class of stationary processes. We obtain the convergency rates and the Bahadur representation, as well as the asymptotic normality for this estimator by the method of m-dependent approximation. Our results can be used in the study of the estimation of value-at-risk(Va R) and applied to many time series which have important applications in econometrics.