In the realm of genetically transformed crops,the process of plant regeneration holds utmost significance.However,the low regeneration efficiency of several wheat varieties currently restricts the use of genetic trans...In the realm of genetically transformed crops,the process of plant regeneration holds utmost significance.However,the low regeneration efficiency of several wheat varieties currently restricts the use of genetic transformation for gene functional analysis and improved crop production.This research explores overex-pression of TaLAX PANICLE1(TaLAX1),which markedly enhances regeneration efficiency,thereby boost-ing genetic transformation and genome editing in wheat.Particularly noteworthy is the substantial increase in regeneration efficiency of common wheat varieties previously regarded as recalcitrant to genetic trans-formation.Our study shows that increased expression of TaGROWTH-REGULATING FACTOR(TaGRF)genes,alongside that of their co-factor,TaGRF-INTERACTING FACTOR 1(TaGIF1),enhances cytokinin accumulation and auxin response,which may play pivotal roles in the improved regeneration and transfor-mation of TaLAX1-overexpressing wheat plants.Overexpression of TaLAX1 homologs also significantly in-creases the regeneration efficiency of maize and soybean,suggesting that both monocot and dicot crops can benefit from this enhancement.Ourfindings shed light on a gene that enhances wheat genetic trans-formation and elucidate molecular mechanisms that potentially underlie wheat regeneration.展开更多
基金funded by the National Key Research and Development Program of China (2022YFF1002902)the National Natural Science Foundation of China (31730008,32070199)the Natural Science Foundation of Shandong Province (ZR2022JQ12).
文摘In the realm of genetically transformed crops,the process of plant regeneration holds utmost significance.However,the low regeneration efficiency of several wheat varieties currently restricts the use of genetic transformation for gene functional analysis and improved crop production.This research explores overex-pression of TaLAX PANICLE1(TaLAX1),which markedly enhances regeneration efficiency,thereby boost-ing genetic transformation and genome editing in wheat.Particularly noteworthy is the substantial increase in regeneration efficiency of common wheat varieties previously regarded as recalcitrant to genetic trans-formation.Our study shows that increased expression of TaGROWTH-REGULATING FACTOR(TaGRF)genes,alongside that of their co-factor,TaGRF-INTERACTING FACTOR 1(TaGIF1),enhances cytokinin accumulation and auxin response,which may play pivotal roles in the improved regeneration and transfor-mation of TaLAX1-overexpressing wheat plants.Overexpression of TaLAX1 homologs also significantly in-creases the regeneration efficiency of maize and soybean,suggesting that both monocot and dicot crops can benefit from this enhancement.Ourfindings shed light on a gene that enhances wheat genetic trans-formation and elucidate molecular mechanisms that potentially underlie wheat regeneration.