期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effects of B on the Microstructure and Oxidation Resistance of Nb-Ti-Si-based Ultrahigh-temperature Alloy 被引量:8
1
作者 wang jun guo xiping guo jinming 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第5期544-550,共7页
Nb-Ti-Si-based ultrahigh-temperature alloys concocted with boron ranging from 0 to 2 at% are prepared by arc-melting technology. The effects of adding boron on their as-melted microstructure and oxidation resistance a... Nb-Ti-Si-based ultrahigh-temperature alloys concocted with boron ranging from 0 to 2 at% are prepared by arc-melting technology. The effects of adding boron on their as-melted microstructure and oxidation resistance are analyzed. The (Nb,Ti)ss, β-(Nb,Ti)5Si3 and γ-(Nb,Ti)5Si3 exist in Nb-22Ti-16Si-6Cr-3Al-4Hf alloy, while (Nb,Ti)ss, α-(Nb,Ti)5Si3 and γ-(Nb,Ti)5Si3 are present in Nb-22Ti-16Si-6Cr-3Al-4Hf-lB and Nb-22Ti-16Si-6Cr-3Al-4Hf-2B alloys. The oxidation of Nb-Ti-Si-based ultrahigh-temperature alloys is dominated by the diffusion of oxygen through (Nb,Ti)ss. Compared to boron-free alloys, the boron-containing alloys have significantly lower oxidation rate when oxidized at 1 200 ℃ for less than 50 h, but, for more than 50 h, their oxidation resistance deteriorates. 展开更多
关键词 oxidation resistance constituent phase oxidation kinetics ultrahigh-temperature alloy ARC-MELTING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部