To obtain the interaction characteristics between Internal solitary waves(ISWs)and submerged bodies,a three-dimensional numerical model for simulating ISWs was established in the present study based on the RANS equati...To obtain the interaction characteristics between Internal solitary waves(ISWs)and submerged bodies,a three-dimensional numerical model for simulating ISWs was established in the present study based on the RANS equation.The velocity entrance method was adopted to generate the ISWs.First,the reliability of this numerical model was validated by comparing it with theoretical and literature results.Then,the influence of environmental and navigation parameters on interactions between ISWs and a fixed SUBOFF-submerged body was studied.According to research,the hydrodynamic performance of the submerged body has been significantly impacted by the ISWs when the body is nearing the central region of the wave.Besides,the pitching moment(y')will predominate when the body encounters the ISWs at a certain angle between 0°and 180°,and the lateral force is larger than the horizontal force.Additionally,the magnitude of the force acting on the body is mostly affected by the wave amplitude.The variation of the vertical force is the main way that ISWs affect the hydrodynamic performance of the bodies.The investigations and findings discussed above can serve as a guide to forecast how ISWs will interact with submerged bodies.展开更多
Amaryllidaceae, a monocot plant family, consists of many important ornamental bulb flower species. Chinese narcissus (Narcissus tazetta var. chinensis Roem), its flowers developed at high temperatures and bloomed at...Amaryllidaceae, a monocot plant family, consists of many important ornamental bulb flower species. Chinese narcissus (Narcissus tazetta var. chinensis Roem), its flowers developed at high temperatures and bloomed at lower temperatures during the Chinese Spring Festival, is a traditional Chinese flower with high economic and ornamental value. To study its flower development, a full length cDNA containing MADS box domain from narcissus was isolated by a reverse transcription polymerase chain reaction (RT-PCR) with degenerate oligo-nucleotide primers derived from a conserved MADS- and K-box domain sequence. The 5' and the 3' regions of the gene were amplified using the PCR protocol for the rapid amplification of cDNA ends (RACE). The 690 bp open reading frame encodes 230 amino acid residues. A comparison of the deduced amino acid sequence of NTAG with the sequence of other MADS box proteins showed 91.3% amino acid identities with HAG (Hyacinthus orientalis). Sequence analysis and alignment showed significant similarity with other AG homologues. RNA blot analysis indicated that the narcissus NTAG gene was expressed only in reproductive organs, especially in stamens and carpels. These results indicated that the NTAG gene was an AG homologue and that the AG genes appeared to be structurally and functionally conserved between dicots and monocots.展开更多
基金financially supported by the Shandong Province Taishan Scholars Project (Grant No.tsqn201909172)Fundamental Research Funds for the Central Universities (Grant No.HIT.OCEF.2021037)+1 种基金the University Young Innovational Team Program,Shandong Province (Grant No.2019KJB004)the China Scholarship Council (Grant No.202106120123)。
文摘To obtain the interaction characteristics between Internal solitary waves(ISWs)and submerged bodies,a three-dimensional numerical model for simulating ISWs was established in the present study based on the RANS equation.The velocity entrance method was adopted to generate the ISWs.First,the reliability of this numerical model was validated by comparing it with theoretical and literature results.Then,the influence of environmental and navigation parameters on interactions between ISWs and a fixed SUBOFF-submerged body was studied.According to research,the hydrodynamic performance of the submerged body has been significantly impacted by the ISWs when the body is nearing the central region of the wave.Besides,the pitching moment(y')will predominate when the body encounters the ISWs at a certain angle between 0°and 180°,and the lateral force is larger than the horizontal force.Additionally,the magnitude of the force acting on the body is mostly affected by the wave amplitude.The variation of the vertical force is the main way that ISWs affect the hydrodynamic performance of the bodies.The investigations and findings discussed above can serve as a guide to forecast how ISWs will interact with submerged bodies.
文摘Amaryllidaceae, a monocot plant family, consists of many important ornamental bulb flower species. Chinese narcissus (Narcissus tazetta var. chinensis Roem), its flowers developed at high temperatures and bloomed at lower temperatures during the Chinese Spring Festival, is a traditional Chinese flower with high economic and ornamental value. To study its flower development, a full length cDNA containing MADS box domain from narcissus was isolated by a reverse transcription polymerase chain reaction (RT-PCR) with degenerate oligo-nucleotide primers derived from a conserved MADS- and K-box domain sequence. The 5' and the 3' regions of the gene were amplified using the PCR protocol for the rapid amplification of cDNA ends (RACE). The 690 bp open reading frame encodes 230 amino acid residues. A comparison of the deduced amino acid sequence of NTAG with the sequence of other MADS box proteins showed 91.3% amino acid identities with HAG (Hyacinthus orientalis). Sequence analysis and alignment showed significant similarity with other AG homologues. RNA blot analysis indicated that the narcissus NTAG gene was expressed only in reproductive organs, especially in stamens and carpels. These results indicated that the NTAG gene was an AG homologue and that the AG genes appeared to be structurally and functionally conserved between dicots and monocots.