H-terminated DLC layers were synthesized on SiO 2 substrate by radio frequency (RF) magnetron plasma-enhanced chemical vapor deposition (PECVD) in a conventional reactor using C 4 H 10 as carbon source. As-deposited D...H-terminated DLC layers were synthesized on SiO 2 substrate by radio frequency (RF) magnetron plasma-enhanced chemical vapor deposition (PECVD) in a conventional reactor using C 4 H 10 as carbon source. As-deposited DLC films were characterized by Raman spectroscopy, scanning electron microscopy (SEM) as well as atomic force microscopy (AFM). The chemical reactivity of the obtained DLC surface was further investigated by exposing the photochemically oxidized DLC surface to a silane reagent. The course of the reaction was followed using water contact angle and X-ray photoelectron spectroscopy.展开更多
基金supported by the National Natural Science Foundation of China (No.51002090)the Outstanding Young Scientist Research Award Fund of Shandong Province (No.BS2010CL028)
文摘H-terminated DLC layers were synthesized on SiO 2 substrate by radio frequency (RF) magnetron plasma-enhanced chemical vapor deposition (PECVD) in a conventional reactor using C 4 H 10 as carbon source. As-deposited DLC films were characterized by Raman spectroscopy, scanning electron microscopy (SEM) as well as atomic force microscopy (AFM). The chemical reactivity of the obtained DLC surface was further investigated by exposing the photochemically oxidized DLC surface to a silane reagent. The course of the reaction was followed using water contact angle and X-ray photoelectron spectroscopy.