Rtecently a lot of works have been investigating to find the tenuous groups,i.e.,groups with few social interactions and weak relationships among members,for reviewer selection and psycho-educational group formation.H...Rtecently a lot of works have been investigating to find the tenuous groups,i.e.,groups with few social interactions and weak relationships among members,for reviewer selection and psycho-educational group formation.However,the metrics(e.g.,k-triangle,k-line,and k-tenuity)used to measure the tenuity,require a suitable k value to be specified which is difficult for users without background knowledge.Thus,in this paper we formulate the most tenuous group(MTG)query in terms of the group distance and average group distance of a group measuring the tenuity to eliminate the influence of parameter k on the tenuity of the group.To address the MTG problem,we first propose an exact algorithm,namely MTGVDIS,which takes priority to selecting those vertices whose vertex distance is large,to generate the result group,and also utilizes effective filtering and pruning strategies.Since MTGVDIS is not fast enough,we design an efficient exact algorithm,called MTG-VDGE,which exploits the degree metric to sort the vertexes and proposes a new combination order,namely degree and reverse based branch and bound(DRBB).MTG-VDGE gives priority to those vertices with small degree.For a large p,we further develop an approximation algorithm,namely MTG-VDLT,which discards candidate attendees with high degree to reduce the number of vertices to be considered.The experimental results on real datasets manifest that the proposed algorithms outperform existing approaches on both efficiency and group tenuity.展开更多
基金supported by the Key-Area Research and Development Program of Guangdong Province(2020B0101100001)Guangdong Basic and Applied Basic Research Foundation(2019B1515130001)+2 种基金the National Natural Science Foundation of China(Grant Nos.61902438 and 61902439)Natural Science Foundation of Guangdong Province(2019A1515011704 and 2019A1515011159)Jianliang Xu's work is supported by HK-RGC(12201018).
文摘Rtecently a lot of works have been investigating to find the tenuous groups,i.e.,groups with few social interactions and weak relationships among members,for reviewer selection and psycho-educational group formation.However,the metrics(e.g.,k-triangle,k-line,and k-tenuity)used to measure the tenuity,require a suitable k value to be specified which is difficult for users without background knowledge.Thus,in this paper we formulate the most tenuous group(MTG)query in terms of the group distance and average group distance of a group measuring the tenuity to eliminate the influence of parameter k on the tenuity of the group.To address the MTG problem,we first propose an exact algorithm,namely MTGVDIS,which takes priority to selecting those vertices whose vertex distance is large,to generate the result group,and also utilizes effective filtering and pruning strategies.Since MTGVDIS is not fast enough,we design an efficient exact algorithm,called MTG-VDGE,which exploits the degree metric to sort the vertexes and proposes a new combination order,namely degree and reverse based branch and bound(DRBB).MTG-VDGE gives priority to those vertices with small degree.For a large p,we further develop an approximation algorithm,namely MTG-VDLT,which discards candidate attendees with high degree to reduce the number of vertices to be considered.The experimental results on real datasets manifest that the proposed algorithms outperform existing approaches on both efficiency and group tenuity.