Development of p-type transparent conducting thin films is tireless due to the trade-off issue between optical transparency and conductivity. The rarely concerned low normal state resistance makes Bi-based superconduc...Development of p-type transparent conducting thin films is tireless due to the trade-off issue between optical transparency and conductivity. The rarely concerned low normal state resistance makes Bi-based superconducting cuprates the potential hole-type transparent conductors, which have been realized in Bi_(2)Sr_(2)CaCu_(2)O_(y) thin films. In this study, epitaxial superconducting Bi_(2)Sr_(2)CuO_(y) and Bi_(2)Sr_(1.8)Nd_(0.2)CuO_(y) thin films with superior normal state conductivity are proposed as ptype transparent conductors. It is found that the Bi_(2)Sr_(1.8)Nd_(0.2)CuO_(y) thin film with thickness 15 nm shows an average visible transmittance of 65% and room-temperature sheet resistance of 650 Ω/sq. The results further demonstrate that Bi-based cuprate superconductors can be regarded as potential p-type transparent conductors for future optoelectronic applications.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11604337)。
文摘Development of p-type transparent conducting thin films is tireless due to the trade-off issue between optical transparency and conductivity. The rarely concerned low normal state resistance makes Bi-based superconducting cuprates the potential hole-type transparent conductors, which have been realized in Bi_(2)Sr_(2)CaCu_(2)O_(y) thin films. In this study, epitaxial superconducting Bi_(2)Sr_(2)CuO_(y) and Bi_(2)Sr_(1.8)Nd_(0.2)CuO_(y) thin films with superior normal state conductivity are proposed as ptype transparent conductors. It is found that the Bi_(2)Sr_(1.8)Nd_(0.2)CuO_(y) thin film with thickness 15 nm shows an average visible transmittance of 65% and room-temperature sheet resistance of 650 Ω/sq. The results further demonstrate that Bi-based cuprate superconductors can be regarded as potential p-type transparent conductors for future optoelectronic applications.