A method is presented that coordinates the calculation of the displacement, velocity and acceleration of structures within the time-steps of different types of step-by-step integration. The dynamic equation is solved ...A method is presented that coordinates the calculation of the displacement, velocity and acceleration of structures within the time-steps of different types of step-by-step integration. The dynamic equation is solved using an energy equation and the calculating data of the original method. The method presented is better than the original method in terms of calculating postulations and is in better conformity with the system's movement. Take the Wilson-θ method as an example. By using the coordination process, the calculation precision has been greatly im proved (reducing the errors by approximately 90% ), and the greater part of overshooting of the calculation result has been eliminated. The study suggests that the mal-coordination of the motion parameters within the time-step is the major factor that contributes to the result errors of step-by-step integration for the dynamic equation.展开更多
文摘A method is presented that coordinates the calculation of the displacement, velocity and acceleration of structures within the time-steps of different types of step-by-step integration. The dynamic equation is solved using an energy equation and the calculating data of the original method. The method presented is better than the original method in terms of calculating postulations and is in better conformity with the system's movement. Take the Wilson-θ method as an example. By using the coordination process, the calculation precision has been greatly im proved (reducing the errors by approximately 90% ), and the greater part of overshooting of the calculation result has been eliminated. The study suggests that the mal-coordination of the motion parameters within the time-step is the major factor that contributes to the result errors of step-by-step integration for the dynamic equation.