The inclination angle ofsbear band is analyzed considering heterogeneity of rock material when a single shear hand is formed in the center of specimen under triaxial compression. The analytical solution of post-peak a...The inclination angle ofsbear band is analyzed considering heterogeneity of rock material when a single shear hand is formed in the center of specimen under triaxial compression. The analytical solution of post-peak axial stress-axial strain curve is deduced using the assumption that the total post-peak deformation is composed of entire uniform elastic deformation and localized shear plastic deformation dependent on the thickness of shear band. The obtained solution shows that the post-peak stiffness is related to the inclination angle of shear band, confining pressure, thickness of shear hand and elastic modulus, etc. Using the solution, the expression for the inclination angle of shear hand can be presented easily and it is dependent on constitutive parameters of rock material and geometry parameters of rock specimen. Larger dilation angle or loading rate leads to increment of the inclination angle. In addition, the inclination angle increases with the thickness of the shear band, which cannot be explained or forecasted by other existing solutions, such as Coulomb inclination, Roscoe inclination and Arthur inclination, etc.展开更多
文摘The inclination angle ofsbear band is analyzed considering heterogeneity of rock material when a single shear hand is formed in the center of specimen under triaxial compression. The analytical solution of post-peak axial stress-axial strain curve is deduced using the assumption that the total post-peak deformation is composed of entire uniform elastic deformation and localized shear plastic deformation dependent on the thickness of shear band. The obtained solution shows that the post-peak stiffness is related to the inclination angle of shear band, confining pressure, thickness of shear hand and elastic modulus, etc. Using the solution, the expression for the inclination angle of shear hand can be presented easily and it is dependent on constitutive parameters of rock material and geometry parameters of rock specimen. Larger dilation angle or loading rate leads to increment of the inclination angle. In addition, the inclination angle increases with the thickness of the shear band, which cannot be explained or forecasted by other existing solutions, such as Coulomb inclination, Roscoe inclination and Arthur inclination, etc.