期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Structural effect and reaction mechanism of MnO_2 catalysts in the catalytic oxidation of chlorinated aromatics 被引量:15
1
作者 Xiaole Weng Yu Long +2 位作者 wanglong wang Min Shao Zhongbiao Wu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第5期638-646,共9页
Various MnO2 structures have been extensively applied in catalysis. In this study,γ-MnO2,α-MnO2, and δ-MnO2 with corresponding rod, tube, and hierarchical architecture morphologies were prepared and applied for the... Various MnO2 structures have been extensively applied in catalysis. In this study,γ-MnO2,α-MnO2, and δ-MnO2 with corresponding rod, tube, and hierarchical architecture morphologies were prepared and applied for the catalytic oxidation of chlorobenzene (CB). The redox ability, H2O activation behavior, and acidity of MnO2 were analyzed using a range of techniques, including TPR, H2O-TPD, XPS, and pyridine-IR. The catalytic activities in CB oxidation were assessed;this revealed that γ-MnO2 exhibited the highest activity and best stability, owing to its enriched surface oxygen vacancies that functioned to activate O2 and H2O, and capture labile chlorine, which reacted with dissociated H2O to form HCl. All the MnO2 phases generated toxic polychlorinated by-products, including CHCl3, CCl4, C2HCl3, and C2Cl4, indicating the occurrence of electrophilic chlorination during CB oxidation. In particular, the dichlorobenzene detected in the effluents of α-MnO2 might generate unintended dioxins via a nucleophilic substitution reaction. 展开更多
关键词 MnO2 CHLOROBENZENE Catalytic oxidation Polychlorinated byproducts Environmental risk
下载PDF
Supercritical water syntheses of transition metal-doped CeO_2 nano-catalysts for selective catalytic reduction of NO by CO:An in situ diffuse reflectance Fourier transform infrared spectroscopy study 被引量:12
2
作者 Xiaoxia Dai Weiyu Jiang +4 位作者 wanglong wang Xiaole Weng Yuan Shang Yehui Xue Zhongbiao Wu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第4期728-735,共8页
In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice... In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice,forming solid solutions.The catalysts were then used for the selective catalytic reduction(SCR)of NO by CO.The Cu‐doped catalyst exhibited the highest SCR activity;it had a T50(i.e.,50%NO conversion)of only 83°C and a T90(i.e.,90%NO conversion)of 126°C.Such an activity was also higher than in many state‐of‐the‐art catalysts.In situ diffuse reflectance Fourier transform infrared spectroscopy suggested that the MOx‐CeO2 catalysts(M=Co and Fe)mainly followed an Eley‐Rideal reaction mechanism for CO‐SCR.In contrast,a Langmuir‐Hinshelwood SCR reaction mechanism occurred in CuO‐CeO2 owing to the presence of Cu+species,which ensured effective adsorption of CO.This explains why CuO‐CeO2 exhibited the highest activity with regard to the SCR of NO by CO. 展开更多
关键词 Supercritical water Nitrogen oxides CO Selective catalytic reduction Diffuse reflectance Fourier transform infrared spectroscopy CEO2
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部