期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The 2023 M_(w)6.8 Adassil Earthquake(Chichaoua,Morocco)on a steep reverse fault in the deep crust and its geodynamic implications
1
作者 Billel Touati wangwang gu +6 位作者 SiDao Ni Risheng Chu MinHan Sheng QingJie Xue Fouzi Bellalem Said Maouche Habibi Yahyaoui 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期522-534,共13页
The Mw 6.8 Adassil earthquake that occurred in the High Atlas on September 8,2023,was a catastrophic event that provided a rare opportunity to study the mechanics of deep crustal seismicity.This research aimed to deci... The Mw 6.8 Adassil earthquake that occurred in the High Atlas on September 8,2023,was a catastrophic event that provided a rare opportunity to study the mechanics of deep crustal seismicity.This research aimed to decipher the rupture characteristics of the Adassil earthquake by analyzing teleseismic waveform data in conjunction with interferometric synthetic aperture radar(InSAR)observations from both ascending and descending orbits.Our analysis revealed a reverse fault mechanism with a centroid depth of approximately 28 km,exceeding the typical range for crustal earthquakes.This result suggests the presence of cooler temperatures in the lower crust,which facilitates the accumulation of tectonic stress.The earthquake exhibited a steep reverse mechanism,dipping at 70°,accompanied by minor strike-slip motion.Within the geotectonic framework of the High Atlas,known for its volcanic legacy and resulting thermal irregularities,we investigated the potential contributions of these factors to the initiation of the Adassil earthquake.Deep seismicity within the lower crust,away from plate boundaries,calls for extensive research to elucidate its implications for regional seismic hazard assessment.Our findings highlight the critical importance of studying and preparing for significant seismic events in similar geological settings,which would provide valuable insights into regional seismic hazard assessments and geodynamic paradigms. 展开更多
关键词 Adassil earthquake seismogenic fault source depth interferometric synthetic aperture radar(InSAR) seismic waveform joint inversion
下载PDF
Causative fault and seismogenic mechanism of the 2010 Suining M5.0 earthquake from joint modeling of seismic and InSAR data
2
作者 wangwang gu Sidao NI +9 位作者 Shuofan WANG Baolong ZHANG Xinglin LEI Risheng CHU Aizhi guO Qiang SHEN Hansheng WANG Liming JIANG Minhan SHENG Jiajun CHONG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第8期1825-1838,共14页
Although the Sichuan basin is a stable block with low historical seismicity,the Suining M5.0 earthquake on January31,2010 occurred near the center of the basin,causing casualty and substantial damage.Previous studies ... Although the Sichuan basin is a stable block with low historical seismicity,the Suining M5.0 earthquake on January31,2010 occurred near the center of the basin,causing casualty and substantial damage.Previous studies have shown that the earthquake is very shallow and may occur in the sedimentary cover rocks,but its causative fault has not been identified.Based on local broadband seismic waveform data as well as a pair of ALOS PALSAR ascending orbit data,we explore the seismogenic mechanism via further constraining the source depth and the ruptured fault.The earthquake caused ground uplift in the southeast of the epicenter area,with a maximum line of sight displacement of about 13.6 cm,much larger than the displacement caused by a M5 earthquake at a typical depth of 10 km,which indicates that the earthquake is very shallow.Through joint inversion of seismic waveform and InSAR data,we obtain the moment magnitude of Suining earthquake as MW4.5,with the strike,dip,and rake of its fault plane as 17°,66° and 90°,respectively,and the centroid depth less than 1 km,supporting that the earthquake occurred at the shallow part of a high angle thrust fault dipping to the southeast.It is further confirmed that the earthquake may be triggered by the diffusion of high-pressure fluid migrating from the underside gas reservoir. 展开更多
关键词 Suining earthquake Seismogenic fault Source depth InSAR Seismic waveform Joint inversion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部