The recent revival of Li metal anodes(LMA)leads to a renewed interest in LMA as the ultimate choice for rechargeable lithium batteries towards high energy density.However,multiple challenges stand in the way of using ...The recent revival of Li metal anodes(LMA)leads to a renewed interest in LMA as the ultimate choice for rechargeable lithium batteries towards high energy density.However,multiple challenges stand in the way of using LMA,of which high reactivity,dendrite growth,the difficulty of fabricating Li thin foils,and the flammability of organic liquid electrolytes are typical.Here,a writable Li metal ink(LMI)prepared by introducing biomass-derived carbon particles into molten Li is presented.Due to the significantly decreased surface tension,LMI is able to directly write on copper foils or other substrates that ultrathin Li foils with a remarkably small thickness(<10μm)can be achieved.The versatility of LMI is further demonstrated in addressing the interface issue between LMA and garnet-type solid-state electrolytes,where directly writing LMI on the garnet offers a perfect contact and enables an extremely low interfacial resistance of 6Ωcm^2,in sharp contrast to 939Ωcm^2 between the pure Li and the garnet.Due to the successful partnership with non-flammable solid-state electrolytes,ink-based technology may have a chance to bring us very close to the use of solid-state lithium metal batteries(SSLMBs)with high safety and high energy density.展开更多
Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) for large-scale energy storage considering the abundance and low cost of Na-containing resources. However, the energy density of S...Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) for large-scale energy storage considering the abundance and low cost of Na-containing resources. However, the energy density of SIBs has been limited by the typically low specific capacities of traditional intercalation-based cathodes. Metal fluorides, in contrast, can deliver much higher capacities based on multi-electron conversion reactions. Among metal fluorides, CuF_(2) presents a theoretical specific capacity as high as 528 mAh/g while its Na-ion storage mechanism has been rarely reported. Here, we report CuF_(2) as a SIB cathode, which delivers a high capacity of 502 mAh/g but suffers from poor electrochemical reversibility. As a solution, we adjust the cell configuration by inserting a carbon-coated separator, which hinders the transportation of dissolved Cu ions and improves the reversibility of the CuF_(2) cathode. By using in-situ XRD measurements and theoretical calculation, we propose that a one-step conversion reaction occurs during the discharge process, and a reconversion reaction competes with the oxidization of Cu to dissolved Cu ion during the charge process.展开更多
无水氟化铜(CuF_(2))有望成为下一代锂电池正极材料,其高比容量(528 mA h g^(−1))和高工作电压(3.55 V vs.Li/Li^(+))使得其能量密度高达1874 W h kg^(−1).然而,由于充电时铜的溶解,CuF_(2)正极容易失活,这限制了其发展.本研究采用氟化...无水氟化铜(CuF_(2))有望成为下一代锂电池正极材料,其高比容量(528 mA h g^(−1))和高工作电压(3.55 V vs.Li/Li^(+))使得其能量密度高达1874 W h kg^(−1).然而,由于充电时铜的溶解,CuF_(2)正极容易失活,这限制了其发展.本研究采用氟化高浓电解液抑制铜的溶解,从而实现了CuF_(2)正极的可逆循环.采用氟化高浓电解液后,CuF_(2)正极的容量在30次循环后仍保有228 mA h g^(−1),是使用传统碳酸酯类电解液的电池容量的近三倍.综上,本研究提出了一种电解质工程策略,可以实现CuF_(2)正极的可逆充放电.展开更多
基金supported by the National Natural Science Foundation of China(51802224)“Shanghai Rising-Star Program”(19QA1409300)the open fund of Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies(EEST2018-3)。
文摘The recent revival of Li metal anodes(LMA)leads to a renewed interest in LMA as the ultimate choice for rechargeable lithium batteries towards high energy density.However,multiple challenges stand in the way of using LMA,of which high reactivity,dendrite growth,the difficulty of fabricating Li thin foils,and the flammability of organic liquid electrolytes are typical.Here,a writable Li metal ink(LMI)prepared by introducing biomass-derived carbon particles into molten Li is presented.Due to the significantly decreased surface tension,LMI is able to directly write on copper foils or other substrates that ultrathin Li foils with a remarkably small thickness(<10μm)can be achieved.The versatility of LMI is further demonstrated in addressing the interface issue between LMA and garnet-type solid-state electrolytes,where directly writing LMI on the garnet offers a perfect contact and enables an extremely low interfacial resistance of 6Ωcm^2,in sharp contrast to 939Ωcm^2 between the pure Li and the garnet.Due to the successful partnership with non-flammable solid-state electrolytes,ink-based technology may have a chance to bring us very close to the use of solid-state lithium metal batteries(SSLMBs)with high safety and high energy density.
基金financial support by the National Natural Science Foundation of China (No. 21975186)“Shanghai Rising-Star Program”(No. 19QA1409300)。
文摘Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) for large-scale energy storage considering the abundance and low cost of Na-containing resources. However, the energy density of SIBs has been limited by the typically low specific capacities of traditional intercalation-based cathodes. Metal fluorides, in contrast, can deliver much higher capacities based on multi-electron conversion reactions. Among metal fluorides, CuF_(2) presents a theoretical specific capacity as high as 528 mAh/g while its Na-ion storage mechanism has been rarely reported. Here, we report CuF_(2) as a SIB cathode, which delivers a high capacity of 502 mAh/g but suffers from poor electrochemical reversibility. As a solution, we adjust the cell configuration by inserting a carbon-coated separator, which hinders the transportation of dissolved Cu ions and improves the reversibility of the CuF_(2) cathode. By using in-situ XRD measurements and theoretical calculation, we propose that a one-step conversion reaction occurs during the discharge process, and a reconversion reaction competes with the oxidization of Cu to dissolved Cu ion during the charge process.
基金This work was supported by the Fundamental Research Funds for the Central Universities and the Institute of Carbon Neutrality of Tongji University.
文摘无水氟化铜(CuF_(2))有望成为下一代锂电池正极材料,其高比容量(528 mA h g^(−1))和高工作电压(3.55 V vs.Li/Li^(+))使得其能量密度高达1874 W h kg^(−1).然而,由于充电时铜的溶解,CuF_(2)正极容易失活,这限制了其发展.本研究采用氟化高浓电解液抑制铜的溶解,从而实现了CuF_(2)正极的可逆循环.采用氟化高浓电解液后,CuF_(2)正极的容量在30次循环后仍保有228 mA h g^(−1),是使用传统碳酸酯类电解液的电池容量的近三倍.综上,本研究提出了一种电解质工程策略,可以实现CuF_(2)正极的可逆充放电.