Hydrogen molecule(H_(2))exhibits broad-spectrum but microenvironment-dependent biomedical effects in varied oxidation stress-related diseases,but its molecular mechanism is unclear and its targeting molecule is unknow...Hydrogen molecule(H_(2))exhibits broad-spectrum but microenvironment-dependent biomedical effects in varied oxidation stress-related diseases,but its molecular mechanism is unclear and its targeting molecule is unknown so far.Herein,we originally reveal that Fe-porphyrin is a H_(2)-targeted molecule.We have demonstrated that the oxidized Fe-porphyrin in both free and protein-confining states can self-catalyze the hydrogenation/reduction by reacting with H_(2)to catalytically scavenge∙OH,and can also catalytically hydrogenate to reduce CO_(2)into CO in the hypoxic microenvironment of in vitro simulation and in vivo tumor,confirming that Fe-porphyrin is a redox-related biosensor of H_(2)and H_(2)is an upstream signaling molecule of CO.These discoveries are favorable for deep understanding and exploration of profound biomedical effects of H2,and helpful for development of innovative drugs and hydrogen energy/agricultural materials.展开更多
This paper reports the first universal and versatile database on aggregate materials for the field of aggregate science research.At the current stage,the database(http://119.91.135.188:8080/)contains over 1000 entries...This paper reports the first universal and versatile database on aggregate materials for the field of aggregate science research.At the current stage,the database(http://119.91.135.188:8080/)contains over 1000 entries of organic aggregate material systems(mainly luminescent systems at the current stage)with a unique data structure which is designed particularly for aggregate materials and containing the photophysics and physicochemical properties of the compounds in different statuses of aggregation,including dilute solution form,pristine solid-state,stable crystalline,and nanoaggregates formed in solvents.The web-based interface of the database provided functions to index,search,manipulate,fetch and deposit data entries.In addition,a background calculation service optimizes the chemical structure of new entries on different levels of accuracies.The database also provided background API for interactive developments of prediction or regression models based on machine-learning algorithms.展开更多
As a new method of cell-cell communication,tunneling nanotubes(TNTs)play important roles in cell-cell signaling and mass exchanges.However,a lack of powerful tools to visualize dynamic TNTs with high temporal/spatial ...As a new method of cell-cell communication,tunneling nanotubes(TNTs)play important roles in cell-cell signaling and mass exchanges.However,a lack of powerful tools to visualize dynamic TNTs with high temporal/spatial resolution restricts the exploration of their formation and cleavage,hindering the complete understanding of its mechanism.Herein,we present the first example of using stochastic optical reconstruction microscopy(STORM)to observe the tube-like structures of TNTs linking live cells with an easily prepared fluorescent dye.Because of this new imaging microscopy,the cleavage process of TNTs was observed with a high spatial resolution.展开更多
基金support from the National Natural Science Foundation of China(Nos.51872188 and 82172078)Shenzhen Science and Technology Program(No.RCJC20210706092010008)+1 种基金Special Funds for the Development of Strategic Emerging Industries in Shenzhen(No.20180309154519685)Center of Hydrogen Science,Shanghai Jiao Tong University,China.
文摘Hydrogen molecule(H_(2))exhibits broad-spectrum but microenvironment-dependent biomedical effects in varied oxidation stress-related diseases,but its molecular mechanism is unclear and its targeting molecule is unknown so far.Herein,we originally reveal that Fe-porphyrin is a H_(2)-targeted molecule.We have demonstrated that the oxidized Fe-porphyrin in both free and protein-confining states can self-catalyze the hydrogenation/reduction by reacting with H_(2)to catalytically scavenge∙OH,and can also catalytically hydrogenate to reduce CO_(2)into CO in the hypoxic microenvironment of in vitro simulation and in vivo tumor,confirming that Fe-porphyrin is a redox-related biosensor of H_(2)and H_(2)is an upstream signaling molecule of CO.These discoveries are favorable for deep understanding and exploration of profound biomedical effects of H2,and helpful for development of innovative drugs and hydrogen energy/agricultural materials.
基金the National Science Foundation of China,Grant/Award Numbers:21975077,52003228,21788102Shenzhen Key Laboratory of Functional Aggregate Materials,Grant/Award Number:ZDSYS20211021111400001+1 种基金the Science and Technology Plan of Shenzhen,Grant/Award Number:JCYJ2021324134613038Open Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates,Grant/Award Number:2019B030301003。
文摘This paper reports the first universal and versatile database on aggregate materials for the field of aggregate science research.At the current stage,the database(http://119.91.135.188:8080/)contains over 1000 entries of organic aggregate material systems(mainly luminescent systems at the current stage)with a unique data structure which is designed particularly for aggregate materials and containing the photophysics and physicochemical properties of the compounds in different statuses of aggregation,including dilute solution form,pristine solid-state,stable crystalline,and nanoaggregates formed in solvents.The web-based interface of the database provided functions to index,search,manipulate,fetch and deposit data entries.In addition,a background calculation service optimizes the chemical structure of new entries on different levels of accuracies.The database also provided background API for interactive developments of prediction or regression models based on machine-learning algorithms.
基金This work has been partially supported by the National Natural Science Foundation of China(Grant Nos.61875131,61525503,61620106016,and 61835009)Shenzhen Basic Research Project(Nos.JCYJ20170818100931714,JCYJ20180305125549234,and JCYJ20170412105003520)Shenzhen International Cooperation Research Project(No.GJHZ20180928161811821).
文摘As a new method of cell-cell communication,tunneling nanotubes(TNTs)play important roles in cell-cell signaling and mass exchanges.However,a lack of powerful tools to visualize dynamic TNTs with high temporal/spatial resolution restricts the exploration of their formation and cleavage,hindering the complete understanding of its mechanism.Herein,we present the first example of using stochastic optical reconstruction microscopy(STORM)to observe the tube-like structures of TNTs linking live cells with an easily prepared fluorescent dye.Because of this new imaging microscopy,the cleavage process of TNTs was observed with a high spatial resolution.