On November 13, 2016, an MW7.8 earthquake struck Kaikoura in South Island of New Zealand. By means of back-projection of array recordings, ASTFs-analysis of global seismic recordings, and joint inversion of global sei...On November 13, 2016, an MW7.8 earthquake struck Kaikoura in South Island of New Zealand. By means of back-projection of array recordings, ASTFs-analysis of global seismic recordings, and joint inversion of global seismic data and co-seismic In SAR data, we investigated complexity of the earthquake source. The result shows that the 2016 MW7.8 Kaikoura earthquake ruptured about 100 s unilaterally from south to northeast(~N28°–33°E), producing a rupture area about 160 km long and about 50 km wide and releasing scalar moment 1.01×1021 Nm. In particular, the rupture area consisted of two slip asperities, with one close to the initial rupture point having a maximal slip value ~6.9 m while the other far away in the northeast having a maximal slip value ~9.3 m. The first asperity slipped for about 65 s and the second one started 40 s after the first one had initiated. The two slipped simultaneously for about 25 s.Furthermore, the first had a nearly thrust slip while the second had both thrust and strike slip. It is interesting that the rupture velocity was not constant, and the whole process may be divided into 5 stages in which the velocities were estimated to be 1.4 km/s, 0 km/s, 2.1 km/s, 0 km/s and 1.1 km/s, respectively. The high-frequency sources distributed nearly along the lower edge of the rupture area, the highfrequency radiating mainly occurred at launching of the asperities, and it seemed that no high-frequency energy was radiated when the rupturing was going to stop.展开更多
On 28 September 201 & an A4W7.5 earthquake struck Palu, Indonesia, and caused a large number of deaths and economic losses. Seismic moment tensor solutions determined by different institutes consistently suggest t...On 28 September 201 & an A4W7.5 earthquake struck Palu, Indonesia, and caused a large number of deaths and economic losses. Seismic moment tensor solutions determined by different institutes consistently suggest that this earthquake is overall a strike-slip event. However, it caused an unexpected large-scale tsunami around the Palu bay area. Commonly, the displacements of hanging wall and foot wall of a strike-slip event are mainly in horizontal directions, and are considerably weak in vertical components. Since vertical deformations are critical for tsunami generations, it is necessary to identify whether the tsunami is related to the source process or not. For this purpose, investigations of the source process are needed [1].展开更多
基金supported by the NSFC project (41474046)the DQJB project (DQJB16B05) of the Institute of Geophysics, CEA
文摘On November 13, 2016, an MW7.8 earthquake struck Kaikoura in South Island of New Zealand. By means of back-projection of array recordings, ASTFs-analysis of global seismic recordings, and joint inversion of global seismic data and co-seismic In SAR data, we investigated complexity of the earthquake source. The result shows that the 2016 MW7.8 Kaikoura earthquake ruptured about 100 s unilaterally from south to northeast(~N28°–33°E), producing a rupture area about 160 km long and about 50 km wide and releasing scalar moment 1.01×1021 Nm. In particular, the rupture area consisted of two slip asperities, with one close to the initial rupture point having a maximal slip value ~6.9 m while the other far away in the northeast having a maximal slip value ~9.3 m. The first asperity slipped for about 65 s and the second one started 40 s after the first one had initiated. The two slipped simultaneously for about 25 s.Furthermore, the first had a nearly thrust slip while the second had both thrust and strike slip. It is interesting that the rupture velocity was not constant, and the whole process may be divided into 5 stages in which the velocities were estimated to be 1.4 km/s, 0 km/s, 2.1 km/s, 0 km/s and 1.1 km/s, respectively. The high-frequency sources distributed nearly along the lower edge of the rupture area, the highfrequency radiating mainly occurred at launching of the asperities, and it seemed that no high-frequency energy was radiated when the rupturing was going to stop.
基金supported by the National Natural Science Foundation of China(41822401 and 41574035)
文摘On 28 September 201 & an A4W7.5 earthquake struck Palu, Indonesia, and caused a large number of deaths and economic losses. Seismic moment tensor solutions determined by different institutes consistently suggest that this earthquake is overall a strike-slip event. However, it caused an unexpected large-scale tsunami around the Palu bay area. Commonly, the displacements of hanging wall and foot wall of a strike-slip event are mainly in horizontal directions, and are considerably weak in vertical components. Since vertical deformations are critical for tsunami generations, it is necessary to identify whether the tsunami is related to the source process or not. For this purpose, investigations of the source process are needed [1].