期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Linearized Transformed L1 Galerkin FEMs with Unconditional Convergence for Nonlinear Time Fractional Schr¨odinger Equations
1
作者 wanqiu yuan Dongfang Li Chengjian Zhang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2023年第2期348-369,共22页
A linearized transformed L1 Galerkin finite element method(FEM)is presented for numerically solving the multi-dimensional time fractional Schr¨odinger equations.Unconditionally optimal error estimates of the full... A linearized transformed L1 Galerkin finite element method(FEM)is presented for numerically solving the multi-dimensional time fractional Schr¨odinger equations.Unconditionally optimal error estimates of the fully-discrete scheme are proved.Such error estimates are obtained by combining a new discrete fractional Gr¨onwall inequality,the corresponding Sobolev embedding theorems and some inverse inequalities.While the previous unconditional convergence results are usually obtained by using the temporal-spatial error spitting approaches.Numerical examples are presented to confirm the theoretical results. 展开更多
关键词 Optimal error estimates time fractional Schr¨odinger equations transformed L1 scheme discrete fractional Gr¨onwall inequality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部